# app/agents/vectorization_agent.py from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=100, ) def agent_vectorize_and_store( doc_id: str, text: str, category: str, language: str, embedding_model, vector_store ): print(f"--- [Background Task] Starting vectorization (ID: {doc_id})...") try: chunks = text_splitter.split_text(text) if not chunks: print(f"--- [Background task] document is empty, skip vectorization. (ID: {doc_id})") return chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))] metadatas = [{"doc_id": doc_id, "category": category, "language": language, "chunk_number": i} for i in range(len(chunks))] embeddings = embedding_model.embed_documents(chunks) vector_store.add( ids=chunk_ids, embeddings=embeddings, documents=chunks, metadatas=metadatas ) print(f"--- [Background Task] Document {doc_id} vectorized。") except Exception as e: print(f"--- [Background Task] Document vectorization failed (ID: {doc_id}): {e}")