# app/agents.py import asyncio import random from .schemas import ReceiptInfo, InvoiceInfo, ReceiptItem # --- Agent核心功能 (占位符/模拟实现) --- # 在实际应用中,这些函数将被替换为调用LangChain和LLM的真实逻辑。 async def agent_classify_document(text: str) -> str: """Agent 1: 文件分类 (模拟)""" print("--- [Agent 1] 正在进行文档分类...") await asyncio.sleep(0.5) # 模拟网络延迟 doc_types = ["信件", "收据", "发票", "合约"] if "发票" in text: return "发票" if "收据" in text or "小票" in text: return "收据" if "合同" in text or "协议" in text: return "合约" return random.choice(doc_types) async def agent_extract_receipt_info(text: str) -> ReceiptInfo: """Agent 2: 收据信息提取 (模拟)""" print("--- [Agent 2] 正在提取收据信息...") await asyncio.sleep(1) # 模拟LLM处理时间 return ReceiptInfo( merchant_name="模拟超市", transaction_date="2025-08-10", total_amount=198.50, items=[ReceiptItem(name="牛奶", quantity=2, price=11.5)] ) async def agent_extract_invoice_info(text: str) -> InvoiceInfo: """Agent 3: 发票信息提取 (模拟)""" print("--- [Agent 3] 正在提取发票信息...") await asyncio.sleep(1) # 模拟LLM处理时间 return InvoiceInfo( invoice_number="INV123456789", issue_date="2025-08-09", seller_name="模拟科技有限公司", total_amount_in_figures=12000.00 ) async def agent_vectorize_and_store(doc_id: str, text: str, category: str, vector_db: dict): """Agent 4: 向量化并存储 (模拟)""" print(f"--- [Agent 4] 正在向量化文档 (ID: {doc_id})...") await asyncio.sleep(0.5) chunks = [text[i:i+200] for i in range(0, len(text), 200)] vector_db[doc_id] = { "metadata": {"category": category, "chunk_count": len(chunks)}, "content_chunks": chunks, "vectors": [random.random() for _ in range(len(chunks) * 128)] } print(f"--- [Agent 4] 文档 {doc_id} 已存入向量数据库。")