43 lines
1.7 KiB
Python
43 lines
1.7 KiB
Python
# app/agents/classification_agent.py
|
||
from langchain.prompts import PromptTemplate
|
||
from langchain_core.output_parsers import PydanticOutputParser
|
||
from ..core.llm import llm
|
||
from ..schemas import ClassificationResult # 导入新的Schema
|
||
|
||
# 1. 设置PydanticOutputParser
|
||
parser = PydanticOutputParser(pydantic_object=ClassificationResult)
|
||
|
||
# 2. 更新Prompt模板以要求语言,并包含格式指令
|
||
classification_template = """
|
||
You are a professional document analysis assistant. Please perform two tasks on the following text:
|
||
1. Determine its category. The category must be one of: ["LETTER", "INVOICE", "RECEIPT", "CONTRACT", "OTHER"].
|
||
2. Detect the primary language of the text. Return the language as a two-letter ISO 639-1 code (e.g., "en" for English, "zh" for Chinese, "es" for Spanish).
|
||
|
||
{format_instructions}
|
||
|
||
[Document Text Start]
|
||
{document_text}
|
||
[Document Text End]
|
||
"""
|
||
|
||
classification_prompt = PromptTemplate(
|
||
template=classification_template,
|
||
input_variables=["document_text"],
|
||
partial_variables={"format_instructions": parser.get_format_instructions()},
|
||
)
|
||
|
||
# 3. 创建新的LangChain链
|
||
classification_chain = classification_prompt | llm | parser
|
||
|
||
|
||
async def agent_classify_document_from_text(text: str) -> ClassificationResult:
|
||
"""Agent 1: Classify document and detect language from OCR-extracted text."""
|
||
print("--- [Agent 1] Calling LLM for classification and language detection...")
|
||
if not text.strip():
|
||
print("--- [Agent 1] Text content is empty, classifying as 'OTHER'.")
|
||
return ClassificationResult(category="OTHER", language="unknown")
|
||
|
||
# 调用链并返回Pydantic对象
|
||
result = await classification_chain.ainvoke({"document_text": text})
|
||
return result
|