Files
AmazingDoc/app/agents/vectorization_agent.py
Yaojia Wang 0a80400720 Init project
2025-08-11 00:07:41 +02:00

39 lines
1.4 KiB
Python

# app/agents/vectorization_agent.py
from langchain.text_splitter import RecursiveCharacterTextSplitter
from ..core.vector_store import vector_store, embedding_model
# 初始化文本分割器,用于将长文档切成小块
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, # 每个块的大小(字符数)
chunk_overlap=50, # 块之间的重叠部分
)
def agent_vectorize_and_store(doc_id: str, text: str, category: str):
"""Agent 4: 向量化并存储 (真实实现)"""
print(f"--- [Agent 4] 正在向量化文档 (ID: {doc_id})...")
# 1. 将文档文本分割成块
chunks = text_splitter.split_text(text)
print(f"--- [Agent 4] 文档被切分为 {len(chunks)} 个块。")
if not chunks:
print(f"--- [Agent 4] 文档内容为空,跳过向量化。")
return
# 2. 为每个块创建唯一的ID和元数据
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
metadatas = [{"doc_id": doc_id, "category": category, "chunk_number": i} for i in range(len(chunks))]
# 3. 使用嵌入模型为所有块生成向量
embeddings = embedding_model.embed_documents(chunks)
# 4. 将ID、向量、元数据和文本块本身添加到ChromaDB
vector_store.add(
ids=chunk_ids,
embeddings=embeddings,
documents=chunks,
metadatas=metadatas
)
print(f"--- [Agent 4] 文档 {doc_id} 的向量已存入ChromaDB。")