Files
AmazingDoc/app/agents/vectorization_agent.py
2025-08-11 21:38:25 +02:00

40 lines
1.2 KiB
Python

# app/agents/vectorization_agent.py
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
)
def agent_vectorize_and_store(
doc_id: str,
text: str,
category: str,
language: str,
embedding_model,
vector_store
):
print(f"--- [Background Task] Starting vectorization (ID: {doc_id})...")
try:
chunks = text_splitter.split_text(text)
if not chunks:
print(f"--- [Background task] document is empty, skip vectorization. (ID: {doc_id})")
return
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
metadatas = [{"doc_id": doc_id, "category": category, "language": language, "chunk_number": i} for i in
range(len(chunks))]
embeddings = embedding_model.embed_documents(chunks)
vector_store.add(
ids=chunk_ids,
embeddings=embeddings,
documents=chunks,
metadatas=metadatas
)
print(f"--- [Background Task] Document {doc_id} vectorized。")
except Exception as e:
print(f"--- [Background Task] Document vectorization failed (ID: {doc_id}): {e}")