Add report
This commit is contained in:
666
ARCHITECTURE_REVIEW.md
Normal file
666
ARCHITECTURE_REVIEW.md
Normal file
@@ -0,0 +1,666 @@
|
||||
# Invoice Master POC v2 - 总体架构审查报告
|
||||
|
||||
**审查日期**: 2026-02-01
|
||||
**审查人**: Claude Code
|
||||
**项目路径**: `/Users/yiukai/Documents/git/invoice-master-poc-v2`
|
||||
|
||||
---
|
||||
|
||||
## 架构概述
|
||||
|
||||
### 整体架构图
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────────┐
|
||||
│ Frontend (React) │
|
||||
│ Vite + TypeScript + TailwindCSS │
|
||||
└─────────────────────────────┬───────────────────────────────────┘
|
||||
│ HTTP/REST
|
||||
┌─────────────────────────────▼───────────────────────────────────┐
|
||||
│ Inference Service (FastAPI) │
|
||||
│ ┌──────────────┬──────────────┬──────────────┬──────────────┐ │
|
||||
│ │ Public API │ Admin API │ Training API│ Batch API │ │
|
||||
│ └──────────────┴──────────────┴──────────────┴──────────────┘ │
|
||||
│ ┌────────────────────────────────────────────────────────────┐ │
|
||||
│ │ Service Layer │ │
|
||||
│ │ InferenceService │ AsyncProcessing │ BatchUpload │ Dataset │ │
|
||||
│ └────────────────────────────────────────────────────────────┘ │
|
||||
│ ┌────────────────────────────────────────────────────────────┐ │
|
||||
│ │ Data Layer │ │
|
||||
│ │ AdminDB │ AsyncRequestDB │ SQLModel │ PostgreSQL │ │
|
||||
│ └────────────────────────────────────────────────────────────┘ │
|
||||
│ ┌────────────────────────────────────────────────────────────┐ │
|
||||
│ │ Core Components │ │
|
||||
│ │ RateLimiter │ Schedulers │ TaskQueues │ Auth │ │
|
||||
│ └────────────────────────────────────────────────────────────┘ │
|
||||
└─────────────────────────────┬───────────────────────────────────┘
|
||||
│ PostgreSQL
|
||||
┌─────────────────────────────▼───────────────────────────────────┐
|
||||
│ Training Service (GPU) │
|
||||
│ ┌────────────────────────────────────────────────────────────┐ │
|
||||
│ │ CLI: train │ autolabel │ analyze │ validate │ │
|
||||
│ └────────────────────────────────────────────────────────────┘ │
|
||||
│ ┌────────────────────────────────────────────────────────────┐ │
|
||||
│ │ YOLO: db_dataset │ annotation_generator │ │
|
||||
│ └────────────────────────────────────────────────────────────┘ │
|
||||
│ ┌────────────────────────────────────────────────────────────┐ │
|
||||
│ │ Processing: CPU Pool │ GPU Pool │ Task Dispatcher │ │
|
||||
│ └────────────────────────────────────────────────────────────┘ │
|
||||
└─────────────────────────────────────────────────────────────────┘
|
||||
│
|
||||
┌─────────┴─────────┐
|
||||
▼ ▼
|
||||
┌──────────────┐ ┌──────────────┐
|
||||
│ Shared │ │ Storage │
|
||||
│ PDF │ OCR │ │ Local/Azure/ │
|
||||
│ Normalize │ │ S3 │
|
||||
└──────────────┘ └──────────────┘
|
||||
```
|
||||
|
||||
### 技术栈
|
||||
|
||||
| 层级 | 技术 | 评估 |
|
||||
|------|------|------|
|
||||
| **前端** | React + Vite + TypeScript + TailwindCSS | ✅ 现代栈 |
|
||||
| **API 框架** | FastAPI | ✅ 高性能,类型安全 |
|
||||
| **数据库** | PostgreSQL + SQLModel | ✅ 类型安全 ORM |
|
||||
| **目标检测** | YOLOv11 (Ultralytics) | ✅ 业界标准 |
|
||||
| **OCR** | PaddleOCR v5 | ✅ 支持瑞典语 |
|
||||
| **部署** | Docker + Azure/AWS | ✅ 云原生 |
|
||||
|
||||
---
|
||||
|
||||
## 架构优势
|
||||
|
||||
### 1. Monorepo 结构 ✅
|
||||
|
||||
```
|
||||
packages/
|
||||
├── shared/ # 共享库 - 无外部依赖
|
||||
├── training/ # 训练服务 - 依赖 shared
|
||||
└── inference/ # 推理服务 - 依赖 shared
|
||||
```
|
||||
|
||||
**优点**:
|
||||
- 清晰的包边界,无循环依赖
|
||||
- 独立部署,training 按需启动
|
||||
- 代码复用率高
|
||||
|
||||
### 2. 分层架构 ✅
|
||||
|
||||
```
|
||||
API Routes (web/api/v1/)
|
||||
↓
|
||||
Service Layer (web/services/)
|
||||
↓
|
||||
Data Layer (data/)
|
||||
↓
|
||||
Database (PostgreSQL)
|
||||
```
|
||||
|
||||
**优点**:
|
||||
- 职责分离明确
|
||||
- 便于单元测试
|
||||
- 可替换底层实现
|
||||
|
||||
### 3. 依赖注入 ✅
|
||||
|
||||
```python
|
||||
# FastAPI Depends 使用得当
|
||||
@router.post("/infer")
|
||||
async def infer(
|
||||
file: UploadFile,
|
||||
db: AdminDB = Depends(get_admin_db), # 注入
|
||||
token: str = Depends(validate_admin_token),
|
||||
):
|
||||
```
|
||||
|
||||
### 4. 存储抽象层 ✅
|
||||
|
||||
```python
|
||||
# 统一接口,支持多后端
|
||||
class StorageBackend(ABC):
|
||||
def upload(self, source: Path, destination: str) -> None: ...
|
||||
def download(self, source: str, destination: Path) -> None: ...
|
||||
def get_presigned_url(self, path: str) -> str: ...
|
||||
|
||||
# 实现: LocalStorageBackend, AzureStorageBackend, S3StorageBackend
|
||||
```
|
||||
|
||||
### 5. 动态模型管理 ✅
|
||||
|
||||
```python
|
||||
# 数据库驱动的模型切换
|
||||
def get_active_model_path() -> Path | None:
|
||||
db = AdminDB()
|
||||
active_model = db.get_active_model_version()
|
||||
return active_model.model_path if active_model else None
|
||||
|
||||
inference_service = InferenceService(
|
||||
model_path_resolver=get_active_model_path,
|
||||
)
|
||||
```
|
||||
|
||||
### 6. 任务队列分离 ✅
|
||||
|
||||
```python
|
||||
# 不同类型任务使用不同队列
|
||||
- AsyncTaskQueue: 异步推理任务
|
||||
- BatchQueue: 批量上传任务
|
||||
- TrainingScheduler: 训练任务调度
|
||||
- AutoLabelScheduler: 自动标注调度
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 架构问题与风险
|
||||
|
||||
### 1. 数据库层职责过重 ⚠️ **中风险**
|
||||
|
||||
**问题**: `AdminDB` 类过大,违反单一职责原则
|
||||
|
||||
```python
|
||||
# packages/inference/inference/data/admin_db.py
|
||||
class AdminDB:
|
||||
# Token 管理 (5 个方法)
|
||||
def is_valid_admin_token(self, token: str) -> bool: ...
|
||||
def create_admin_token(self, token: str, name: str): ...
|
||||
|
||||
# 文档管理 (8 个方法)
|
||||
def create_document(self, ...): ...
|
||||
def get_document(self, doc_id: str): ...
|
||||
|
||||
# 标注管理 (6 个方法)
|
||||
def create_annotation(self, ...): ...
|
||||
def get_annotations(self, doc_id: str): ...
|
||||
|
||||
# 训练任务 (7 个方法)
|
||||
def create_training_task(self, ...): ...
|
||||
def update_training_task(self, ...): ...
|
||||
|
||||
# 数据集 (6 个方法)
|
||||
def create_dataset(self, ...): ...
|
||||
def get_dataset(self, dataset_id: str): ...
|
||||
|
||||
# 模型版本 (5 个方法)
|
||||
def create_model_version(self, ...): ...
|
||||
def activate_model_version(self, ...): ...
|
||||
|
||||
# 批处理 (4 个方法)
|
||||
# 锁管理 (3 个方法)
|
||||
# ... 总计 50+ 方法
|
||||
```
|
||||
|
||||
**影响**:
|
||||
- 类过大,难以维护
|
||||
- 测试困难
|
||||
- 不同领域变更互相影响
|
||||
|
||||
**建议**: 按领域拆分为 Repository 模式
|
||||
|
||||
```python
|
||||
# 建议重构
|
||||
class TokenRepository:
|
||||
def validate(self, token: str) -> bool: ...
|
||||
def create(self, token: Token) -> None: ...
|
||||
|
||||
class DocumentRepository:
|
||||
def find_by_id(self, doc_id: str) -> Document | None: ...
|
||||
def save(self, document: Document) -> None: ...
|
||||
|
||||
class TrainingRepository:
|
||||
def create_task(self, config: TrainingConfig) -> TrainingTask: ...
|
||||
def update_task_status(self, task_id: str, status: TaskStatus): ...
|
||||
|
||||
class ModelRepository:
|
||||
def get_active(self) -> ModelVersion | None: ...
|
||||
def activate(self, version_id: str) -> None: ...
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 2. Service 层混合业务逻辑与技术细节 ⚠️ **中风险**
|
||||
|
||||
**问题**: `InferenceService` 既处理业务逻辑又处理技术实现
|
||||
|
||||
```python
|
||||
# packages/inference/inference/web/services/inference.py
|
||||
class InferenceService:
|
||||
def process(self, image_bytes: bytes) -> ServiceResult:
|
||||
# 1. 技术细节: 图像解码
|
||||
image = Image.open(io.BytesIO(image_bytes))
|
||||
|
||||
# 2. 业务逻辑: 字段提取
|
||||
fields = self._extract_fields(image)
|
||||
|
||||
# 3. 技术细节: 模型推理
|
||||
detections = self._model.predict(image)
|
||||
|
||||
# 4. 业务逻辑: 结果验证
|
||||
if not self._validate_fields(fields):
|
||||
raise ValidationError()
|
||||
```
|
||||
|
||||
**影响**:
|
||||
- 难以测试业务逻辑
|
||||
- 技术变更影响业务代码
|
||||
- 无法切换技术实现
|
||||
|
||||
**建议**: 引入领域层和适配器模式
|
||||
|
||||
```python
|
||||
# 领域层 - 纯业务逻辑
|
||||
@dataclass
|
||||
class InvoiceDocument:
|
||||
document_id: str
|
||||
pages: list[Page]
|
||||
|
||||
class InvoiceExtractor:
|
||||
"""纯业务逻辑,不依赖技术实现"""
|
||||
def extract(self, document: InvoiceDocument) -> InvoiceFields:
|
||||
# 只处理业务规则
|
||||
pass
|
||||
|
||||
# 适配器层 - 技术实现
|
||||
class YoloFieldDetector:
|
||||
"""YOLO 技术适配器"""
|
||||
def __init__(self, model_path: Path):
|
||||
self._model = YOLO(model_path)
|
||||
|
||||
def detect(self, image: np.ndarray) -> list[FieldRegion]:
|
||||
return self._model.predict(image)
|
||||
|
||||
class PaddleOcrEngine:
|
||||
"""PaddleOCR 技术适配器"""
|
||||
def __init__(self):
|
||||
self._ocr = PaddleOCR()
|
||||
|
||||
def recognize(self, image: np.ndarray, region: BoundingBox) -> str:
|
||||
return self._ocr.ocr(image, region)
|
||||
|
||||
# 应用服务 - 协调领域和适配器
|
||||
class InvoiceProcessingService:
|
||||
def __init__(
|
||||
self,
|
||||
extractor: InvoiceExtractor,
|
||||
detector: FieldDetector,
|
||||
ocr: OcrEngine,
|
||||
):
|
||||
self._extractor = extractor
|
||||
self._detector = detector
|
||||
self._ocr = ocr
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 3. 调度器设计分散 ⚠️ **中风险**
|
||||
|
||||
**问题**: 多个独立调度器缺乏统一协调
|
||||
|
||||
```python
|
||||
# 当前设计 - 4 个独立调度器
|
||||
# 1. TrainingScheduler (core/scheduler.py)
|
||||
# 2. AutoLabelScheduler (core/autolabel_scheduler.py)
|
||||
# 3. AsyncTaskQueue (workers/async_queue.py)
|
||||
# 4. BatchQueue (workers/batch_queue.py)
|
||||
|
||||
# app.py 中分别启动
|
||||
start_scheduler() # 训练调度器
|
||||
start_autolabel_scheduler() # 自动标注调度器
|
||||
init_batch_queue() # 批处理队列
|
||||
```
|
||||
|
||||
**影响**:
|
||||
- 资源竞争风险
|
||||
- 难以监控和追踪
|
||||
- 任务优先级难以管理
|
||||
- 重启时任务丢失
|
||||
|
||||
**建议**: 使用 Celery + Redis 统一任务队列
|
||||
|
||||
```python
|
||||
# 建议重构
|
||||
from celery import Celery
|
||||
|
||||
app = Celery('invoice_master')
|
||||
|
||||
@app.task(bind=True, max_retries=3)
|
||||
def process_inference(self, document_id: str):
|
||||
"""异步推理任务"""
|
||||
try:
|
||||
service = get_inference_service()
|
||||
result = service.process(document_id)
|
||||
return result
|
||||
except Exception as exc:
|
||||
raise self.retry(exc=exc, countdown=60)
|
||||
|
||||
@app.task
|
||||
def train_model(dataset_id: str, config: dict):
|
||||
"""训练任务"""
|
||||
training_service = get_training_service()
|
||||
return training_service.train(dataset_id, config)
|
||||
|
||||
@app.task
|
||||
def auto_label_documents(document_ids: list[str]):
|
||||
"""批量自动标注"""
|
||||
for doc_id in document_ids:
|
||||
auto_label_document.delay(doc_id)
|
||||
|
||||
# 优先级队列
|
||||
app.conf.task_routes = {
|
||||
'tasks.process_inference': {'queue': 'high_priority'},
|
||||
'tasks.train_model': {'queue': 'gpu_queue'},
|
||||
'tasks.auto_label_documents': {'queue': 'low_priority'},
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 4. 配置分散 ⚠️ **低风险**
|
||||
|
||||
**问题**: 配置分散在多个文件
|
||||
|
||||
```python
|
||||
# packages/shared/shared/config.py
|
||||
DATABASE = {...}
|
||||
PATHS = {...}
|
||||
AUTOLABEL = {...}
|
||||
|
||||
# packages/inference/inference/web/config.py
|
||||
@dataclass
|
||||
class ModelConfig: ...
|
||||
@dataclass
|
||||
class ServerConfig: ...
|
||||
@dataclass
|
||||
class FileConfig: ...
|
||||
|
||||
# 环境变量
|
||||
# .env 文件
|
||||
```
|
||||
|
||||
**影响**:
|
||||
- 配置难以追踪
|
||||
- 可能出现不一致
|
||||
- 缺少配置验证
|
||||
|
||||
**建议**: 使用 Pydantic Settings 集中管理
|
||||
|
||||
```python
|
||||
# config/settings.py
|
||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||
|
||||
class DatabaseSettings(BaseSettings):
|
||||
model_config = SettingsConfigDict(env_prefix='DB_')
|
||||
|
||||
host: str = 'localhost'
|
||||
port: int = 5432
|
||||
name: str = 'docmaster'
|
||||
user: str = 'docmaster'
|
||||
password: str # 无默认值,必须设置
|
||||
|
||||
class StorageSettings(BaseSettings):
|
||||
model_config = SettingsConfigDict(env_prefix='STORAGE_')
|
||||
|
||||
backend: str = 'local'
|
||||
base_path: str = '~/invoice-data'
|
||||
azure_connection_string: str | None = None
|
||||
s3_bucket: str | None = None
|
||||
|
||||
class Settings(BaseSettings):
|
||||
model_config = SettingsConfigDict(
|
||||
env_file='.env',
|
||||
env_file_encoding='utf-8',
|
||||
)
|
||||
|
||||
database: DatabaseSettings = DatabaseSettings()
|
||||
storage: StorageSettings = StorageSettings()
|
||||
|
||||
# 验证
|
||||
@field_validator('database')
|
||||
def validate_database(cls, v):
|
||||
if not v.password:
|
||||
raise ValueError('Database password is required')
|
||||
return v
|
||||
|
||||
# 全局配置实例
|
||||
settings = Settings()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 5. 内存队列单点故障 ⚠️ **中风险**
|
||||
|
||||
**问题**: AsyncTaskQueue 和 BatchQueue 基于内存
|
||||
|
||||
```python
|
||||
# workers/async_queue.py
|
||||
class AsyncTaskQueue:
|
||||
def __init__(self):
|
||||
self._queue = Queue() # 内存队列
|
||||
self._workers = []
|
||||
|
||||
def enqueue(self, task: AsyncTask) -> None:
|
||||
self._queue.put(task) # 仅存储在内存
|
||||
```
|
||||
|
||||
**影响**:
|
||||
- 服务重启丢失所有待处理任务
|
||||
- 无法水平扩展
|
||||
- 任务持久化困难
|
||||
|
||||
**建议**: 使用 Redis/RabbitMQ 持久化队列
|
||||
|
||||
---
|
||||
|
||||
### 6. 缺少 API 版本迁移策略 ❓ **低风险**
|
||||
|
||||
**问题**: 有 `/api/v1/` 版本,但缺少升级策略
|
||||
|
||||
```
|
||||
当前: /api/v1/admin/documents
|
||||
未来: /api/v2/admin/documents ?
|
||||
```
|
||||
|
||||
**建议**:
|
||||
- 制定 API 版本升级流程
|
||||
- 使用 Header 版本控制
|
||||
- 维护版本兼容性文档
|
||||
|
||||
---
|
||||
|
||||
## 关键架构风险矩阵
|
||||
|
||||
| 风险项 | 概率 | 影响 | 风险等级 | 优先级 |
|
||||
|--------|------|------|----------|--------|
|
||||
| 内存队列丢失任务 | 中 | 高 | **高** | 🔴 P0 |
|
||||
| AdminDB 职责过重 | 高 | 中 | **中** | 🟡 P1 |
|
||||
| Service 层混合 | 高 | 中 | **中** | 🟡 P1 |
|
||||
| 调度器资源竞争 | 中 | 中 | **中** | 🟡 P1 |
|
||||
| 配置分散 | 高 | 低 | **低** | 🟢 P2 |
|
||||
| API 版本策略 | 低 | 低 | **低** | 🟢 P2 |
|
||||
|
||||
---
|
||||
|
||||
## 改进建议路线图
|
||||
|
||||
### Phase 1: 立即执行 (本周)
|
||||
|
||||
#### 1.1 拆分 AdminDB
|
||||
```python
|
||||
# 创建 repositories 包
|
||||
inference/data/repositories/
|
||||
├── __init__.py
|
||||
├── base.py # Repository 基类
|
||||
├── token.py # TokenRepository
|
||||
├── document.py # DocumentRepository
|
||||
├── annotation.py # AnnotationRepository
|
||||
├── training.py # TrainingRepository
|
||||
├── dataset.py # DatasetRepository
|
||||
└── model.py # ModelRepository
|
||||
```
|
||||
|
||||
#### 1.2 统一配置
|
||||
```python
|
||||
# 创建统一配置模块
|
||||
inference/config/
|
||||
├── __init__.py
|
||||
├── settings.py # Pydantic Settings
|
||||
└── validators.py # 配置验证
|
||||
```
|
||||
|
||||
### Phase 2: 短期执行 (本月)
|
||||
|
||||
#### 2.1 引入消息队列
|
||||
```yaml
|
||||
# docker-compose.yml 添加
|
||||
services:
|
||||
redis:
|
||||
image: redis:7-alpine
|
||||
ports:
|
||||
- "6379:6379"
|
||||
|
||||
celery_worker:
|
||||
build: .
|
||||
command: celery -A inference.tasks worker -l info
|
||||
depends_on:
|
||||
- redis
|
||||
- postgres
|
||||
```
|
||||
|
||||
#### 2.2 添加缓存层
|
||||
```python
|
||||
# 使用 Redis 缓存热点数据
|
||||
from redis import Redis
|
||||
|
||||
redis_client = Redis(host='localhost', port=6379)
|
||||
|
||||
class CachedDocumentRepository(DocumentRepository):
|
||||
def find_by_id(self, doc_id: str) -> Document | None:
|
||||
# 先查缓存
|
||||
cached = redis_client.get(f"doc:{doc_id}")
|
||||
if cached:
|
||||
return Document.parse_raw(cached)
|
||||
|
||||
# 再查数据库
|
||||
doc = super().find_by_id(doc_id)
|
||||
if doc:
|
||||
redis_client.setex(f"doc:{doc_id}", 3600, doc.json())
|
||||
return doc
|
||||
```
|
||||
|
||||
### Phase 3: 长期执行 (本季度)
|
||||
|
||||
#### 3.1 数据库读写分离
|
||||
```python
|
||||
# 配置主从数据库
|
||||
class DatabaseManager:
|
||||
def __init__(self):
|
||||
self._master = create_engine(MASTER_DB_URL)
|
||||
self._replica = create_engine(REPLICA_DB_URL)
|
||||
|
||||
def get_session(self, readonly: bool = False) -> Session:
|
||||
engine = self._replica if readonly else self._master
|
||||
return Session(engine)
|
||||
```
|
||||
|
||||
#### 3.2 事件驱动架构
|
||||
```python
|
||||
# 引入事件总线
|
||||
from event_bus import EventBus
|
||||
|
||||
bus = EventBus()
|
||||
|
||||
# 发布事件
|
||||
@router.post("/documents")
|
||||
async def create_document(...):
|
||||
doc = document_repo.save(document)
|
||||
bus.publish('document.created', {'document_id': doc.id})
|
||||
return doc
|
||||
|
||||
# 订阅事件
|
||||
@bus.subscribe('document.created')
|
||||
def on_document_created(event):
|
||||
# 触发自动标注
|
||||
auto_label_task.delay(event['document_id'])
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 架构演进建议
|
||||
|
||||
### 当前架构 (适合 1-10 用户)
|
||||
|
||||
```
|
||||
Single Instance
|
||||
├── FastAPI App
|
||||
├── Memory Queues
|
||||
└── PostgreSQL
|
||||
```
|
||||
|
||||
### 目标架构 (适合 100+ 用户)
|
||||
|
||||
```
|
||||
Load Balancer
|
||||
├── FastAPI Instance 1
|
||||
├── FastAPI Instance 2
|
||||
└── FastAPI Instance N
|
||||
│
|
||||
┌───────┴───────┐
|
||||
▼ ▼
|
||||
Redis Cluster PostgreSQL
|
||||
(Celery + Cache) (Master + Replica)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 总结
|
||||
|
||||
### 总体评分
|
||||
|
||||
| 维度 | 评分 | 说明 |
|
||||
|------|------|------|
|
||||
| **模块化** | 8/10 | 包结构清晰,但部分类过大 |
|
||||
| **可扩展性** | 7/10 | 水平扩展良好,垂直扩展受限 |
|
||||
| **可维护性** | 8/10 | 分层合理,但职责边界需细化 |
|
||||
| **可靠性** | 7/10 | 内存队列是单点故障 |
|
||||
| **性能** | 8/10 | 异步处理良好 |
|
||||
| **安全性** | 8/10 | 基础安全到位 |
|
||||
| **总体** | **7.7/10** | 良好的架构基础,需优化细节 |
|
||||
|
||||
### 关键结论
|
||||
|
||||
1. **架构设计合理**: Monorepo + 分层架构适合当前规模
|
||||
2. **主要风险**: 内存队列和数据库职责过重
|
||||
3. **演进路径**: 引入消息队列和缓存层
|
||||
4. **投入产出**: 当前架构可支撑到 100+ 用户,无需大规模重构
|
||||
|
||||
### 下一步行动
|
||||
|
||||
| 优先级 | 任务 | 预计工时 | 影响 |
|
||||
|--------|------|----------|------|
|
||||
| 🔴 P0 | 引入 Celery + Redis | 3 天 | 解决任务丢失问题 |
|
||||
| 🟡 P1 | 拆分 AdminDB | 2 天 | 提升可维护性 |
|
||||
| 🟡 P1 | 统一配置管理 | 1 天 | 减少配置错误 |
|
||||
| 🟢 P2 | 添加缓存层 | 2 天 | 提升性能 |
|
||||
| 🟢 P2 | 数据库读写分离 | 3 天 | 提升扩展性 |
|
||||
|
||||
---
|
||||
|
||||
## 附录
|
||||
|
||||
### 关键文件清单
|
||||
|
||||
| 文件 | 职责 | 问题 |
|
||||
|------|------|------|
|
||||
| `inference/data/admin_db.py` | 数据库操作 | 类过大,需拆分 |
|
||||
| `inference/web/services/inference.py` | 推理服务 | 混合业务和技术 |
|
||||
| `inference/web/workers/async_queue.py` | 异步队列 | 内存存储,易丢失 |
|
||||
| `inference/web/core/scheduler.py` | 任务调度 | 缺少统一协调 |
|
||||
| `shared/shared/config.py` | 共享配置 | 分散管理 |
|
||||
|
||||
### 参考资源
|
||||
|
||||
- [Repository Pattern](https://martinfowler.com/eaaCatalog/repository.html)
|
||||
- [Celery Documentation](https://docs.celeryproject.org/)
|
||||
- [Pydantic Settings](https://docs.pydantic.dev/latest/concepts/pydantic_settings/)
|
||||
- [FastAPI Best Practices](https://fastapi.tiangolo.com/tutorial/bigger-applications/)
|
||||
Reference in New Issue
Block a user