Initial commit: Invoice field extraction system using YOLO + OCR

Features:
- Auto-labeling pipeline: CSV values -> PDF search -> YOLO annotations
- Flexible date matching: year-month match, nearby date tolerance
- PDF text extraction with PyMuPDF
- OCR support for scanned documents (PaddleOCR)
- YOLO training and inference pipeline
- 7 field types: InvoiceNumber, InvoiceDate, InvoiceDueDate, OCR, Bankgiro, Plusgiro, Amount

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
Yaojia Wang
2026-01-10 17:44:14 +01:00
commit 8938661850
35 changed files with 5020 additions and 0 deletions

55
scripts/run_autolabel.sh Normal file
View File

@@ -0,0 +1,55 @@
#!/bin/bash
# 自动标注运行脚本
# 使用方法: bash scripts/run_autolabel.sh
set -e
# 项目根目录
PROJECT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
cd "$PROJECT_DIR"
# 激活虚拟环境
if [ -f "venv/bin/activate" ]; then
source venv/bin/activate
else
echo "错误: 虚拟环境不存在,请先运行 setup_wsl.sh"
exit 1
fi
# 默认参数
CSV_FILE="${CSV_FILE:-data/structured_data/invoices.csv}"
PDF_DIR="${PDF_DIR:-data/raw_pdfs}"
OUTPUT_DIR="${OUTPUT_DIR:-data/dataset}"
REPORT_FILE="${REPORT_FILE:-reports/autolabel_report.jsonl}"
DPI="${DPI:-300}"
MIN_CONFIDENCE="${MIN_CONFIDENCE:-0.7}"
# 显示配置
echo "=========================================="
echo "自动标注配置"
echo "=========================================="
echo "CSV 文件: $CSV_FILE"
echo "PDF 目录: $PDF_DIR"
echo "输出目录: $OUTPUT_DIR"
echo "报告文件: $REPORT_FILE"
echo "DPI: $DPI"
echo "最小置信度: $MIN_CONFIDENCE"
echo "=========================================="
echo ""
# 创建必要目录
mkdir -p "$(dirname "$REPORT_FILE")"
mkdir -p "$OUTPUT_DIR"
# 运行自动标注
python -m src.cli.autolabel \
--csv "$CSV_FILE" \
--pdf-dir "$PDF_DIR" \
--output "$OUTPUT_DIR" \
--report "$REPORT_FILE" \
--dpi "$DPI" \
--min-confidence "$MIN_CONFIDENCE" \
--verbose
echo ""
echo "完成! 数据集已生成到: $OUTPUT_DIR"

67
scripts/run_train.sh Normal file
View File

@@ -0,0 +1,67 @@
#!/bin/bash
# 训练运行脚本
# 使用方法: bash scripts/run_train.sh
set -e
# 项目根目录
PROJECT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
cd "$PROJECT_DIR"
# 激活虚拟环境
if [ -f "venv/bin/activate" ]; then
source venv/bin/activate
else
echo "错误: 虚拟环境不存在,请先运行 setup_wsl.sh"
exit 1
fi
# 默认参数
DATA_YAML="${DATA_YAML:-data/dataset/dataset.yaml}"
MODEL="${MODEL:-yolov8s.pt}"
EPOCHS="${EPOCHS:-100}"
BATCH_SIZE="${BATCH_SIZE:-16}"
IMG_SIZE="${IMG_SIZE:-1280}"
DEVICE="${DEVICE:-0}"
# 检查数据集是否存在
if [ ! -f "$DATA_YAML" ]; then
echo "错误: 数据集配置文件不存在: $DATA_YAML"
echo "请先运行自动标注: bash scripts/run_autolabel.sh"
exit 1
fi
# 显示配置
echo "=========================================="
echo "训练配置"
echo "=========================================="
echo "数据集: $DATA_YAML"
echo "基础模型: $MODEL"
echo "Epochs: $EPOCHS"
echo "Batch Size: $BATCH_SIZE"
echo "图像尺寸: $IMG_SIZE"
echo "设备: $DEVICE"
echo "=========================================="
echo ""
# 检查 GPU
if command -v nvidia-smi &> /dev/null; then
echo "GPU 状态:"
nvidia-smi --query-gpu=name,memory.used,memory.total --format=csv,noheader
echo ""
else
echo "警告: 未检测到 GPU将使用 CPU 训练 (较慢)"
DEVICE="cpu"
fi
# 运行训练
python -m src.cli.train \
--data "$DATA_YAML" \
--model "$MODEL" \
--epochs "$EPOCHS" \
--batch "$BATCH_SIZE" \
--imgsz "$IMG_SIZE" \
--device "$DEVICE"
echo ""
echo "训练完成! 模型保存在: runs/train/invoice_fields/weights/"

80
scripts/setup_wsl.sh Normal file
View File

@@ -0,0 +1,80 @@
#!/bin/bash
# WSL 环境安装脚本
# 使用方法: bash scripts/setup_wsl.sh
set -e
echo "=========================================="
echo "Invoice Master POC v2 - WSL 安装脚本"
echo "=========================================="
# 检查是否在 WSL 中运行
if ! grep -qi microsoft /proc/version 2>/dev/null; then
echo "警告: 未检测到 WSL 环境,请在 WSL 中运行此脚本"
echo "提示: 在 Windows 终端中输入 'wsl' 进入 WSL"
exit 1
fi
echo ""
echo "[1/5] 更新系统包..."
sudo apt update
echo ""
echo "[2/5] 安装系统依赖..."
sudo apt install -y \
python3.10 \
python3.10-venv \
python3-pip \
libgl1-mesa-glx \
libglib2.0-0 \
libsm6 \
libxrender1 \
libxext6 \
libgomp1
echo ""
echo "[3/5] 创建 Python 虚拟环境..."
if [ -d "venv" ]; then
echo "虚拟环境已存在,跳过创建"
else
python3 -m venv venv
fi
echo ""
echo "[4/5] 激活虚拟环境并安装依赖..."
source venv/bin/activate
pip install --upgrade pip
echo ""
echo "安装 Python 依赖包..."
pip install -r requirements.txt
echo ""
echo "[5/5] 验证安装..."
python3 -c "import fitz; print(f'PyMuPDF: {fitz.version}')"
python3 -c "from ultralytics import YOLO; print('Ultralytics: OK')"
python3 -c "from paddleocr import PaddleOCR; print('PaddleOCR: OK')"
echo ""
echo "=========================================="
echo "安装完成!"
echo "=========================================="
echo ""
echo "使用方法:"
echo " 1. 激活虚拟环境: source venv/bin/activate"
echo " 2. 运行自动标注: python -m src.cli.autolabel --help"
echo " 3. 训练模型: python -m src.cli.train --help"
echo " 4. 推理: python -m src.cli.infer --help"
echo ""
# 检查 GPU
echo "检查 GPU 支持..."
if command -v nvidia-smi &> /dev/null; then
echo "检测到 NVIDIA GPU:"
nvidia-smi --query-gpu=name,memory.total --format=csv,noheader
echo ""
echo "提示: 运行以下命令启用 GPU 加速:"
echo " pip install paddlepaddle-gpu"
else
echo "未检测到 GPU将使用 CPU 模式"
fi