Initial commit: Invoice field extraction system using YOLO + OCR

Features:
- Auto-labeling pipeline: CSV values -> PDF search -> YOLO annotations
- Flexible date matching: year-month match, nearby date tolerance
- PDF text extraction with PyMuPDF
- OCR support for scanned documents (PaddleOCR)
- YOLO training and inference pipeline
- 7 field types: InvoiceNumber, InvoiceDate, InvoiceDueDate, OCR, Bankgiro, Plusgiro, Amount

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
Yaojia Wang
2026-01-10 17:44:14 +01:00
commit 8938661850
35 changed files with 5020 additions and 0 deletions

67
scripts/run_train.sh Normal file
View File

@@ -0,0 +1,67 @@
#!/bin/bash
# 训练运行脚本
# 使用方法: bash scripts/run_train.sh
set -e
# 项目根目录
PROJECT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
cd "$PROJECT_DIR"
# 激活虚拟环境
if [ -f "venv/bin/activate" ]; then
source venv/bin/activate
else
echo "错误: 虚拟环境不存在,请先运行 setup_wsl.sh"
exit 1
fi
# 默认参数
DATA_YAML="${DATA_YAML:-data/dataset/dataset.yaml}"
MODEL="${MODEL:-yolov8s.pt}"
EPOCHS="${EPOCHS:-100}"
BATCH_SIZE="${BATCH_SIZE:-16}"
IMG_SIZE="${IMG_SIZE:-1280}"
DEVICE="${DEVICE:-0}"
# 检查数据集是否存在
if [ ! -f "$DATA_YAML" ]; then
echo "错误: 数据集配置文件不存在: $DATA_YAML"
echo "请先运行自动标注: bash scripts/run_autolabel.sh"
exit 1
fi
# 显示配置
echo "=========================================="
echo "训练配置"
echo "=========================================="
echo "数据集: $DATA_YAML"
echo "基础模型: $MODEL"
echo "Epochs: $EPOCHS"
echo "Batch Size: $BATCH_SIZE"
echo "图像尺寸: $IMG_SIZE"
echo "设备: $DEVICE"
echo "=========================================="
echo ""
# 检查 GPU
if command -v nvidia-smi &> /dev/null; then
echo "GPU 状态:"
nvidia-smi --query-gpu=name,memory.used,memory.total --format=csv,noheader
echo ""
else
echo "警告: 未检测到 GPU将使用 CPU 训练 (较慢)"
DEVICE="cpu"
fi
# 运行训练
python -m src.cli.train \
--data "$DATA_YAML" \
--model "$MODEL" \
--epochs "$EPOCHS" \
--batch "$BATCH_SIZE" \
--imgsz "$IMG_SIZE" \
--device "$DEVICE"
echo ""
echo "训练完成! 模型保存在: runs/train/invoice_fields/weights/"