WIP
This commit is contained in:
567
docs/azure-deployment-guide.md
Normal file
567
docs/azure-deployment-guide.md
Normal file
@@ -0,0 +1,567 @@
|
||||
# Azure 部署方案完整指南
|
||||
|
||||
## 目录
|
||||
- [核心问题](#核心问题)
|
||||
- [存储方案](#存储方案)
|
||||
- [训练方案](#训练方案)
|
||||
- [推理方案](#推理方案)
|
||||
- [价格对比](#价格对比)
|
||||
- [推荐架构](#推荐架构)
|
||||
- [实施步骤](#实施步骤)
|
||||
|
||||
---
|
||||
|
||||
## 核心问题
|
||||
|
||||
| 问题 | 答案 |
|
||||
|------|------|
|
||||
| Azure Blob Storage 能用于训练吗? | 可以,用 BlobFuse2 挂载 |
|
||||
| 能实时从 Blob 读取训练吗? | 可以,但建议配置本地缓存 |
|
||||
| 本地能挂载 Azure Blob 吗? | 可以,用 Rclone (Windows) 或 BlobFuse2 (Linux) |
|
||||
| VM 空闲时收费吗? | 收费,只要开机就按小时计费 |
|
||||
| 如何按需付费? | 用 Serverless GPU 或 min=0 的 Compute Cluster |
|
||||
| 推理服务用什么? | Container Apps (CPU) 或 Serverless GPU |
|
||||
|
||||
---
|
||||
|
||||
## 存储方案
|
||||
|
||||
### Azure Blob Storage + BlobFuse2(推荐)
|
||||
|
||||
```bash
|
||||
# 安装 BlobFuse2
|
||||
sudo apt-get install blobfuse2
|
||||
|
||||
# 配置文件
|
||||
cat > ~/blobfuse-config.yaml << 'EOF'
|
||||
logging:
|
||||
type: syslog
|
||||
level: log_warning
|
||||
|
||||
components:
|
||||
- libfuse
|
||||
- file_cache
|
||||
- azstorage
|
||||
|
||||
file_cache:
|
||||
path: /tmp/blobfuse2
|
||||
timeout-sec: 120
|
||||
max-size-mb: 4096
|
||||
|
||||
azstorage:
|
||||
type: block
|
||||
account-name: YOUR_ACCOUNT
|
||||
account-key: YOUR_KEY
|
||||
container: training-images
|
||||
EOF
|
||||
|
||||
# 挂载
|
||||
mkdir -p /mnt/azure-blob
|
||||
blobfuse2 mount /mnt/azure-blob --config-file=~/blobfuse-config.yaml
|
||||
```
|
||||
|
||||
### 本地开发(Windows)
|
||||
|
||||
```powershell
|
||||
# 安装
|
||||
winget install WinFsp.WinFsp
|
||||
winget install Rclone.Rclone
|
||||
|
||||
# 配置
|
||||
rclone config # 选择 azureblob
|
||||
|
||||
# 挂载为 Z: 盘
|
||||
rclone mount azure:training-images Z: --vfs-cache-mode full
|
||||
```
|
||||
|
||||
### 存储费用
|
||||
|
||||
| 层级 | 价格 | 适用场景 |
|
||||
|------|------|---------|
|
||||
| Hot | $0.018/GB/月 | 频繁访问 |
|
||||
| Cool | $0.01/GB/月 | 偶尔访问 |
|
||||
| Archive | $0.002/GB/月 | 长期存档 |
|
||||
|
||||
**本项目**: ~10,000 张图片 × 500KB = ~5GB → **~$0.09/月**
|
||||
|
||||
---
|
||||
|
||||
## 训练方案
|
||||
|
||||
### 方案总览
|
||||
|
||||
| 方案 | 适用场景 | 空闲费用 | 复杂度 |
|
||||
|------|---------|---------|--------|
|
||||
| Azure VM | 简单直接 | 24/7 收费 | 低 |
|
||||
| Azure VM Spot | 省钱、可中断 | 24/7 收费 | 低 |
|
||||
| Azure ML Compute | MLOps 集成 | 可缩到 0 | 中 |
|
||||
| Container Apps GPU | Serverless | 自动缩到 0 | 中 |
|
||||
|
||||
### Azure VM vs Azure ML
|
||||
|
||||
| 特性 | Azure VM | Azure ML |
|
||||
|------|----------|----------|
|
||||
| 本质 | 虚拟机 | 托管 ML 平台 |
|
||||
| 计算费用 | $3.06/hr (NC6s_v3) | $3.06/hr (相同) |
|
||||
| 附加费用 | ~$5/月 | ~$20-30/月 |
|
||||
| 实验跟踪 | 无 | 内置 |
|
||||
| 自动扩缩 | 无 | 支持 min=0 |
|
||||
| 适用人群 | DevOps | 数据科学家 |
|
||||
|
||||
### Azure ML 附加费用明细
|
||||
|
||||
| 服务 | 用途 | 费用 |
|
||||
|------|------|------|
|
||||
| Container Registry | Docker 镜像 | ~$5-20/月 |
|
||||
| Blob Storage | 日志、模型 | ~$0.10/月 |
|
||||
| Application Insights | 监控 | ~$0-10/月 |
|
||||
| Key Vault | 密钥管理 | <$1/月 |
|
||||
|
||||
### Spot 实例
|
||||
|
||||
两种平台都支持 Spot/低优先级实例,最高节省 90%:
|
||||
|
||||
| 类型 | 正常价格 | Spot 价格 | 节省 |
|
||||
|------|---------|----------|------|
|
||||
| NC6s_v3 (V100) | $3.06/hr | ~$0.92/hr | 70% |
|
||||
| NC24ads_A100_v4 | $3.67/hr | ~$1.15/hr | 69% |
|
||||
|
||||
### GPU 实例价格
|
||||
|
||||
| 实例 | GPU | 显存 | 价格/小时 | Spot 价格 |
|
||||
|------|-----|------|---------|----------|
|
||||
| NC6s_v3 | 1x V100 | 16GB | $3.06 | $0.92 |
|
||||
| NC24s_v3 | 4x V100 | 64GB | $12.24 | $3.67 |
|
||||
| NC24ads_A100_v4 | 1x A100 | 80GB | $3.67 | $1.15 |
|
||||
| NC48ads_A100_v4 | 2x A100 | 160GB | $7.35 | $2.30 |
|
||||
|
||||
---
|
||||
|
||||
## 推理方案
|
||||
|
||||
### 方案对比
|
||||
|
||||
| 方案 | GPU 支持 | 扩缩容 | 价格 | 适用场景 |
|
||||
|------|---------|--------|------|---------|
|
||||
| Container Apps (CPU) | 否 | 自动 0-N | ~$30/月 | YOLO 推理 (够用) |
|
||||
| Container Apps (GPU) | 是 | Serverless | 按秒计费 | 高吞吐推理 |
|
||||
| Azure App Service | 否 | 手动/自动 | ~$50/月 | 简单部署 |
|
||||
| Azure ML Endpoint | 是 | 自动 | ~$100+/月 | MLOps 集成 |
|
||||
| AKS (Kubernetes) | 是 | 自动 | 复杂计费 | 大规模生产 |
|
||||
|
||||
### 推荐: Container Apps (CPU)
|
||||
|
||||
对于 YOLO 推理,**CPU 足够**,不需要 GPU:
|
||||
- YOLOv11n 在 CPU 上推理时间 ~200-500ms
|
||||
- 比 GPU 便宜很多,适合中低流量
|
||||
|
||||
```yaml
|
||||
# Container Apps 配置
|
||||
name: invoice-inference
|
||||
image: myacr.azurecr.io/invoice-inference:v1
|
||||
resources:
|
||||
cpu: 2.0
|
||||
memory: 4Gi
|
||||
scale:
|
||||
minReplicas: 1 # 最少 1 个实例保持响应
|
||||
maxReplicas: 10 # 最多扩展到 10 个
|
||||
rules:
|
||||
- name: http-scaling
|
||||
http:
|
||||
metadata:
|
||||
concurrentRequests: "50" # 每实例 50 并发时扩容
|
||||
```
|
||||
|
||||
### 推理服务代码示例
|
||||
|
||||
```python
|
||||
# Dockerfile
|
||||
FROM python:3.11-slim
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
# 安装依赖
|
||||
COPY requirements.txt .
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# 复制代码和模型
|
||||
COPY src/ ./src/
|
||||
COPY models/best.pt ./models/
|
||||
|
||||
# 启动服务
|
||||
CMD ["uvicorn", "src.web.app:app", "--host", "0.0.0.0", "--port", "8000"]
|
||||
```
|
||||
|
||||
```python
|
||||
# src/web/app.py
|
||||
from fastapi import FastAPI, UploadFile, File
|
||||
from ultralytics import YOLO
|
||||
import tempfile
|
||||
|
||||
app = FastAPI()
|
||||
model = YOLO("models/best.pt")
|
||||
|
||||
@app.post("/api/v1/infer")
|
||||
async def infer(file: UploadFile = File(...)):
|
||||
# 保存上传文件
|
||||
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp:
|
||||
content = await file.read()
|
||||
tmp.write(content)
|
||||
tmp_path = tmp.name
|
||||
|
||||
# 执行推理
|
||||
results = model.predict(tmp_path, conf=0.5)
|
||||
|
||||
# 返回结果
|
||||
return {
|
||||
"fields": extract_fields(results),
|
||||
"confidence": get_confidence(results)
|
||||
}
|
||||
|
||||
@app.get("/health")
|
||||
async def health():
|
||||
return {"status": "healthy"}
|
||||
```
|
||||
|
||||
### 部署命令
|
||||
|
||||
```bash
|
||||
# 1. 创建 Container Registry
|
||||
az acr create --name invoiceacr --resource-group myRG --sku Basic
|
||||
|
||||
# 2. 构建并推送镜像
|
||||
az acr build --registry invoiceacr --image invoice-inference:v1 .
|
||||
|
||||
# 3. 创建 Container Apps 环境
|
||||
az containerapp env create \
|
||||
--name invoice-env \
|
||||
--resource-group myRG \
|
||||
--location eastus
|
||||
|
||||
# 4. 部署应用
|
||||
az containerapp create \
|
||||
--name invoice-inference \
|
||||
--resource-group myRG \
|
||||
--environment invoice-env \
|
||||
--image invoiceacr.azurecr.io/invoice-inference:v1 \
|
||||
--registry-server invoiceacr.azurecr.io \
|
||||
--cpu 2 --memory 4Gi \
|
||||
--min-replicas 1 --max-replicas 10 \
|
||||
--ingress external --target-port 8000
|
||||
|
||||
# 5. 获取 URL
|
||||
az containerapp show --name invoice-inference --resource-group myRG --query properties.configuration.ingress.fqdn
|
||||
```
|
||||
|
||||
### 高吞吐场景: Serverless GPU
|
||||
|
||||
如果需要 GPU 加速推理(高并发、低延迟):
|
||||
|
||||
```bash
|
||||
# 请求 GPU 配额
|
||||
az containerapp env workload-profile add \
|
||||
--name invoice-env \
|
||||
--resource-group myRG \
|
||||
--workload-profile-name gpu \
|
||||
--workload-profile-type Consumption-GPU-T4
|
||||
|
||||
# 部署 GPU 版本
|
||||
az containerapp create \
|
||||
--name invoice-inference-gpu \
|
||||
--resource-group myRG \
|
||||
--environment invoice-env \
|
||||
--image invoiceacr.azurecr.io/invoice-inference-gpu:v1 \
|
||||
--workload-profile-name gpu \
|
||||
--cpu 4 --memory 8Gi \
|
||||
--min-replicas 0 --max-replicas 5 \
|
||||
--ingress external --target-port 8000
|
||||
```
|
||||
|
||||
### 推理性能对比
|
||||
|
||||
| 配置 | 单次推理时间 | 并发能力 | 月费估算 |
|
||||
|------|------------|---------|---------|
|
||||
| CPU 2核 4GB | ~300-500ms | ~50 QPS | ~$30 |
|
||||
| CPU 4核 8GB | ~200-300ms | ~100 QPS | ~$60 |
|
||||
| GPU T4 | ~50-100ms | ~200 QPS | 按秒计费 |
|
||||
| GPU A100 | ~20-50ms | ~500 QPS | 按秒计费 |
|
||||
|
||||
---
|
||||
|
||||
## 价格对比
|
||||
|
||||
### 月度成本对比(假设每天训练 2 小时)
|
||||
|
||||
| 方案 | 计算方式 | 月费 |
|
||||
|------|---------|------|
|
||||
| VM 24/7 运行 | 24h × 30天 × $3.06 | ~$2,200 |
|
||||
| VM 按需启停 | 2h × 30天 × $3.06 | ~$184 |
|
||||
| VM Spot 按需 | 2h × 30天 × $0.92 | ~$55 |
|
||||
| Serverless GPU | 2h × 30天 × ~$3.50 | ~$210 |
|
||||
| Azure ML (min=0) | 2h × 30天 × $3.06 | ~$184 |
|
||||
|
||||
### 本项目完整成本估算
|
||||
|
||||
| 组件 | 推荐方案 | 月费 |
|
||||
|------|---------|------|
|
||||
| 图片存储 | Blob Storage (Hot) | ~$0.10 |
|
||||
| 数据库 | PostgreSQL Flexible (Burstable B1ms) | ~$25 |
|
||||
| 推理服务 | Container Apps CPU (2核4GB) | ~$30 |
|
||||
| 训练服务 | Azure ML Spot (按需) | ~$1-5/次 |
|
||||
| Container Registry | Basic | ~$5 |
|
||||
| **总计** | | **~$65/月** + 训练费 |
|
||||
|
||||
---
|
||||
|
||||
## 推荐架构
|
||||
|
||||
### 整体架构图
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────┐
|
||||
│ Azure Blob Storage │
|
||||
│ ├── training-images/ │
|
||||
│ ├── datasets/ │
|
||||
│ └── models/ │
|
||||
└─────────────────┬───────────────────┘
|
||||
│
|
||||
┌─────────────────────────────────┼─────────────────────────────────┐
|
||||
│ │ │
|
||||
▼ ▼ ▼
|
||||
┌───────────────────────┐ ┌───────────────────────┐ ┌───────────────────────┐
|
||||
│ 推理服务 (24/7) │ │ 训练服务 (按需) │ │ Web UI (可选) │
|
||||
│ Container Apps │ │ Azure ML Compute │ │ Static Web Apps │
|
||||
│ CPU 2核 4GB │ │ min=0, Spot │ │ ~$0 (免费层) │
|
||||
│ ~$30/月 │ │ ~$1-5/次训练 │ │ │
|
||||
│ │ │ │ │ │
|
||||
│ ┌───────────────────┐ │ │ ┌───────────────────┐ │ │ ┌───────────────────┐ │
|
||||
│ │ FastAPI + YOLO │ │ │ │ YOLOv11 Training │ │ │ │ React/Vue 前端 │ │
|
||||
│ │ /api/v1/infer │ │ │ │ 100 epochs │ │ │ │ 上传发票界面 │ │
|
||||
│ └───────────────────┘ │ │ └───────────────────┘ │ │ └───────────────────┘ │
|
||||
└───────────┬───────────┘ └───────────┬───────────┘ └───────────┬───────────┘
|
||||
│ │ │
|
||||
└───────────────────────────────┼───────────────────────────────┘
|
||||
│
|
||||
▼
|
||||
┌───────────────────────┐
|
||||
│ PostgreSQL │
|
||||
│ Flexible Server │
|
||||
│ Burstable B1ms │
|
||||
│ ~$25/月 │
|
||||
└───────────────────────┘
|
||||
```
|
||||
|
||||
### 推理服务配置
|
||||
|
||||
```yaml
|
||||
# Container Apps - CPU (24/7 运行)
|
||||
name: invoice-inference
|
||||
resources:
|
||||
cpu: 2
|
||||
memory: 4Gi
|
||||
scale:
|
||||
minReplicas: 1
|
||||
maxReplicas: 10
|
||||
env:
|
||||
- name: MODEL_PATH
|
||||
value: /app/models/best.pt
|
||||
- name: DB_HOST
|
||||
secretRef: db-host
|
||||
- name: DB_PASSWORD
|
||||
secretRef: db-password
|
||||
```
|
||||
|
||||
### 训练服务配置
|
||||
|
||||
**方案 A: Azure ML Compute(推荐)**
|
||||
|
||||
```python
|
||||
from azure.ai.ml.entities import AmlCompute
|
||||
|
||||
gpu_cluster = AmlCompute(
|
||||
name="gpu-cluster",
|
||||
size="Standard_NC6s_v3",
|
||||
min_instances=0, # 空闲时关机
|
||||
max_instances=1,
|
||||
tier="LowPriority", # Spot 实例
|
||||
idle_time_before_scale_down=120
|
||||
)
|
||||
```
|
||||
|
||||
**方案 B: Container Apps Serverless GPU**
|
||||
|
||||
```yaml
|
||||
name: invoice-training
|
||||
resources:
|
||||
gpu: 1
|
||||
gpuType: A100
|
||||
scale:
|
||||
minReplicas: 0
|
||||
maxReplicas: 1
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 实施步骤
|
||||
|
||||
### 阶段 1: 存储设置
|
||||
|
||||
```bash
|
||||
# 创建 Storage Account
|
||||
az storage account create \
|
||||
--name invoicestorage \
|
||||
--resource-group myRG \
|
||||
--sku Standard_LRS
|
||||
|
||||
# 创建容器
|
||||
az storage container create --name training-images --account-name invoicestorage
|
||||
az storage container create --name datasets --account-name invoicestorage
|
||||
az storage container create --name models --account-name invoicestorage
|
||||
|
||||
# 上传训练数据
|
||||
az storage blob upload-batch \
|
||||
--destination training-images \
|
||||
--source ./data/dataset/temp \
|
||||
--account-name invoicestorage
|
||||
```
|
||||
|
||||
### 阶段 2: 数据库设置
|
||||
|
||||
```bash
|
||||
# 创建 PostgreSQL
|
||||
az postgres flexible-server create \
|
||||
--name invoice-db \
|
||||
--resource-group myRG \
|
||||
--sku-name Standard_B1ms \
|
||||
--storage-size 32 \
|
||||
--admin-user docmaster \
|
||||
--admin-password YOUR_PASSWORD
|
||||
|
||||
# 配置防火墙
|
||||
az postgres flexible-server firewall-rule create \
|
||||
--name allow-azure \
|
||||
--resource-group myRG \
|
||||
--server-name invoice-db \
|
||||
--start-ip-address 0.0.0.0 \
|
||||
--end-ip-address 0.0.0.0
|
||||
```
|
||||
|
||||
### 阶段 3: 推理服务部署
|
||||
|
||||
```bash
|
||||
# 创建 Container Registry
|
||||
az acr create --name invoiceacr --resource-group myRG --sku Basic
|
||||
|
||||
# 构建镜像
|
||||
az acr build --registry invoiceacr --image invoice-inference:v1 .
|
||||
|
||||
# 创建环境
|
||||
az containerapp env create \
|
||||
--name invoice-env \
|
||||
--resource-group myRG \
|
||||
--location eastus
|
||||
|
||||
# 部署推理服务
|
||||
az containerapp create \
|
||||
--name invoice-inference \
|
||||
--resource-group myRG \
|
||||
--environment invoice-env \
|
||||
--image invoiceacr.azurecr.io/invoice-inference:v1 \
|
||||
--registry-server invoiceacr.azurecr.io \
|
||||
--cpu 2 --memory 4Gi \
|
||||
--min-replicas 1 --max-replicas 10 \
|
||||
--ingress external --target-port 8000 \
|
||||
--env-vars \
|
||||
DB_HOST=invoice-db.postgres.database.azure.com \
|
||||
DB_NAME=docmaster \
|
||||
DB_USER=docmaster \
|
||||
--secrets db-password=YOUR_PASSWORD
|
||||
```
|
||||
|
||||
### 阶段 4: 训练服务设置
|
||||
|
||||
```bash
|
||||
# 创建 Azure ML Workspace
|
||||
az ml workspace create --name invoice-ml --resource-group myRG
|
||||
|
||||
# 创建 Compute Cluster
|
||||
az ml compute create --name gpu-cluster \
|
||||
--type AmlCompute \
|
||||
--size Standard_NC6s_v3 \
|
||||
--min-instances 0 \
|
||||
--max-instances 1 \
|
||||
--tier low_priority
|
||||
```
|
||||
|
||||
### 阶段 5: 集成训练触发 API
|
||||
|
||||
```python
|
||||
# src/web/routes/training.py
|
||||
from fastapi import APIRouter
|
||||
from azure.ai.ml import MLClient, command
|
||||
from azure.identity import DefaultAzureCredential
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
ml_client = MLClient(
|
||||
credential=DefaultAzureCredential(),
|
||||
subscription_id="your-subscription-id",
|
||||
resource_group_name="myRG",
|
||||
workspace_name="invoice-ml"
|
||||
)
|
||||
|
||||
@router.post("/api/v1/train")
|
||||
async def trigger_training(request: TrainingRequest):
|
||||
"""触发 Azure ML 训练任务"""
|
||||
training_job = command(
|
||||
code="./training",
|
||||
command=f"python train.py --epochs {request.epochs}",
|
||||
environment="AzureML-pytorch-2.0-cuda11.8@latest",
|
||||
compute="gpu-cluster",
|
||||
)
|
||||
job = ml_client.jobs.create_or_update(training_job)
|
||||
return {
|
||||
"job_id": job.name,
|
||||
"status": job.status,
|
||||
"studio_url": job.studio_url
|
||||
}
|
||||
|
||||
@router.get("/api/v1/train/{job_id}/status")
|
||||
async def get_training_status(job_id: str):
|
||||
"""查询训练状态"""
|
||||
job = ml_client.jobs.get(job_id)
|
||||
return {"status": job.status}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 总结
|
||||
|
||||
### 推荐配置
|
||||
|
||||
| 组件 | 推荐方案 | 月费估算 |
|
||||
|------|---------|---------|
|
||||
| 图片存储 | Blob Storage (Hot) | ~$0.10 |
|
||||
| 数据库 | PostgreSQL Flexible | ~$25 |
|
||||
| 推理服务 | Container Apps CPU | ~$30 |
|
||||
| 训练服务 | Azure ML (min=0, Spot) | 按需 ~$1-5/次 |
|
||||
| Container Registry | Basic | ~$5 |
|
||||
| **总计** | | **~$65/月** + 训练费 |
|
||||
|
||||
### 关键决策
|
||||
|
||||
| 场景 | 选择 |
|
||||
|------|------|
|
||||
| 偶尔训练,简单需求 | Azure VM Spot + 手动启停 |
|
||||
| 需要 MLOps,团队协作 | Azure ML Compute |
|
||||
| 追求最低空闲成本 | Container Apps Serverless GPU |
|
||||
| 生产环境推理 | Container Apps CPU |
|
||||
| 高并发推理 | Container Apps Serverless GPU |
|
||||
|
||||
### 注意事项
|
||||
|
||||
1. **冷启动**: Serverless GPU 启动需要 3-8 分钟
|
||||
2. **Spot 中断**: 可能被抢占,需要检查点机制
|
||||
3. **网络延迟**: Blob Storage 挂载比本地 SSD 慢,建议开启缓存
|
||||
4. **区域选择**: 选择有 GPU 配额的区域 (East US, West Europe 等)
|
||||
5. **推理优化**: CPU 推理对于 YOLO 已经足够,无需 GPU
|
||||
Reference in New Issue
Block a user