Add claude config

This commit is contained in:
Yaojia Wang
2026-01-25 16:17:23 +01:00
parent e599424a92
commit d5101e3604
40 changed files with 5559 additions and 1378 deletions

View File

@@ -0,0 +1,314 @@
# Backend Development Patterns
Backend architecture patterns for Python/FastAPI/PostgreSQL applications.
## API Design
### RESTful Structure
```
GET /api/v1/documents # List
GET /api/v1/documents/{id} # Get
POST /api/v1/documents # Create
PUT /api/v1/documents/{id} # Replace
PATCH /api/v1/documents/{id} # Update
DELETE /api/v1/documents/{id} # Delete
GET /api/v1/documents?status=processed&sort=created_at&limit=20&offset=0
```
### FastAPI Route Pattern
```python
from fastapi import APIRouter, HTTPException, Depends, Query, File, UploadFile
from pydantic import BaseModel
router = APIRouter(prefix="/api/v1", tags=["inference"])
@router.post("/infer", response_model=ApiResponse[InferenceResult])
async def infer_document(
file: UploadFile = File(...),
confidence_threshold: float = Query(0.5, ge=0, le=1),
service: InferenceService = Depends(get_inference_service)
) -> ApiResponse[InferenceResult]:
result = await service.process(file, confidence_threshold)
return ApiResponse(success=True, data=result)
```
### Consistent Response Schema
```python
from typing import Generic, TypeVar
T = TypeVar('T')
class ApiResponse(BaseModel, Generic[T]):
success: bool
data: T | None = None
error: str | None = None
meta: dict | None = None
```
## Core Patterns
### Repository Pattern
```python
from typing import Protocol
class DocumentRepository(Protocol):
def find_all(self, filters: dict | None = None) -> list[Document]: ...
def find_by_id(self, id: str) -> Document | None: ...
def create(self, data: dict) -> Document: ...
def update(self, id: str, data: dict) -> Document: ...
def delete(self, id: str) -> None: ...
```
### Service Layer
```python
class InferenceService:
def __init__(self, model_path: str, use_gpu: bool = True):
self.pipeline = InferencePipeline(model_path=model_path, use_gpu=use_gpu)
async def process(self, file: UploadFile, confidence_threshold: float) -> InferenceResult:
temp_path = self._save_temp_file(file)
try:
return self.pipeline.process_pdf(temp_path)
finally:
temp_path.unlink(missing_ok=True)
```
### Dependency Injection
```python
from functools import lru_cache
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
db_host: str = "localhost"
db_password: str
model_path: str = "runs/train/invoice_fields/weights/best.pt"
class Config:
env_file = ".env"
@lru_cache()
def get_settings() -> Settings:
return Settings()
def get_inference_service(settings: Settings = Depends(get_settings)) -> InferenceService:
return InferenceService(model_path=settings.model_path)
```
## Database Patterns
### Connection Pooling
```python
from psycopg2 import pool
from contextlib import contextmanager
db_pool = pool.ThreadedConnectionPool(minconn=2, maxconn=10, **db_config)
@contextmanager
def get_db_connection():
conn = db_pool.getconn()
try:
yield conn
finally:
db_pool.putconn(conn)
```
### Query Optimization
```python
# GOOD: Select only needed columns
cur.execute("""
SELECT id, status, fields->>'InvoiceNumber' as invoice_number
FROM documents WHERE status = %s
ORDER BY created_at DESC LIMIT %s
""", ('processed', 10))
# BAD: SELECT * FROM documents
```
### N+1 Prevention
```python
# BAD: N+1 queries
for doc in documents:
doc.labels = get_labels(doc.id) # N queries
# GOOD: Batch fetch with JOIN
cur.execute("""
SELECT d.id, d.status, array_agg(l.label) as labels
FROM documents d
LEFT JOIN document_labels l ON d.id = l.document_id
GROUP BY d.id, d.status
""")
```
### Transaction Pattern
```python
def create_document_with_labels(doc_data: dict, labels: list[dict]) -> str:
with get_db_connection() as conn:
try:
with conn.cursor() as cur:
cur.execute("INSERT INTO documents ... RETURNING id", ...)
doc_id = cur.fetchone()[0]
for label in labels:
cur.execute("INSERT INTO document_labels ...", ...)
conn.commit()
return doc_id
except Exception:
conn.rollback()
raise
```
## Caching
```python
from cachetools import TTLCache
_cache = TTLCache(maxsize=1000, ttl=300)
def get_document_cached(doc_id: str) -> Document | None:
if doc_id in _cache:
return _cache[doc_id]
doc = repo.find_by_id(doc_id)
if doc:
_cache[doc_id] = doc
return doc
```
## Error Handling
### Exception Hierarchy
```python
class AppError(Exception):
def __init__(self, message: str, status_code: int = 500):
self.message = message
self.status_code = status_code
class NotFoundError(AppError):
def __init__(self, resource: str, id: str):
super().__init__(f"{resource} not found: {id}", 404)
class ValidationError(AppError):
def __init__(self, message: str):
super().__init__(message, 400)
```
### FastAPI Exception Handler
```python
@app.exception_handler(AppError)
async def app_error_handler(request: Request, exc: AppError):
return JSONResponse(status_code=exc.status_code, content={"success": False, "error": exc.message})
@app.exception_handler(Exception)
async def generic_error_handler(request: Request, exc: Exception):
logger.error(f"Unexpected error: {exc}", exc_info=True)
return JSONResponse(status_code=500, content={"success": False, "error": "Internal server error"})
```
### Retry with Backoff
```python
async def retry_with_backoff(fn, max_retries: int = 3, base_delay: float = 1.0):
last_error = None
for attempt in range(max_retries):
try:
return await fn() if asyncio.iscoroutinefunction(fn) else fn()
except Exception as e:
last_error = e
if attempt < max_retries - 1:
await asyncio.sleep(base_delay * (2 ** attempt))
raise last_error
```
## Rate Limiting
```python
from time import time
from collections import defaultdict
class RateLimiter:
def __init__(self):
self.requests: dict[str, list[float]] = defaultdict(list)
def check_limit(self, identifier: str, max_requests: int, window_sec: int) -> bool:
now = time()
self.requests[identifier] = [t for t in self.requests[identifier] if now - t < window_sec]
if len(self.requests[identifier]) >= max_requests:
return False
self.requests[identifier].append(now)
return True
limiter = RateLimiter()
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
ip = request.client.host
if not limiter.check_limit(ip, max_requests=100, window_sec=60):
return JSONResponse(status_code=429, content={"error": "Rate limit exceeded"})
return await call_next(request)
```
## Logging & Middleware
### Request Logging
```python
@app.middleware("http")
async def log_requests(request: Request, call_next):
request_id = str(uuid.uuid4())[:8]
start_time = time.time()
logger.info(f"[{request_id}] {request.method} {request.url.path}")
response = await call_next(request)
duration_ms = (time.time() - start_time) * 1000
logger.info(f"[{request_id}] Completed {response.status_code} in {duration_ms:.2f}ms")
return response
```
### Structured Logging
```python
class JSONFormatter(logging.Formatter):
def format(self, record):
return json.dumps({
"timestamp": datetime.utcnow().isoformat(),
"level": record.levelname,
"message": record.getMessage(),
"module": record.module,
})
```
## Background Tasks
```python
from fastapi import BackgroundTasks
def send_notification(document_id: str, status: str):
logger.info(f"Notification: {document_id} -> {status}")
@router.post("/infer")
async def infer(file: UploadFile, background_tasks: BackgroundTasks):
result = await process_document(file)
background_tasks.add_task(send_notification, result.document_id, "completed")
return result
```
## Key Principles
- Repository pattern: Abstract data access
- Service layer: Business logic separated from routes
- Dependency injection via `Depends()`
- Connection pooling for database
- Parameterized queries only (no f-strings in SQL)
- Batch fetch to prevent N+1
- Consistent `ApiResponse[T]` format
- Exception hierarchy with proper status codes
- Rate limit by IP
- Structured logging with request ID

View File

@@ -0,0 +1,665 @@
---
name: coding-standards
description: Universal coding standards, best practices, and patterns for Python, FastAPI, and data processing development.
---
# Coding Standards & Best Practices
Python coding standards for the Invoice Master project.
## Code Quality Principles
### 1. Readability First
- Code is read more than written
- Clear variable and function names
- Self-documenting code preferred over comments
- Consistent formatting (follow PEP 8)
### 2. KISS (Keep It Simple, Stupid)
- Simplest solution that works
- Avoid over-engineering
- No premature optimization
- Easy to understand > clever code
### 3. DRY (Don't Repeat Yourself)
- Extract common logic into functions
- Create reusable utilities
- Share modules across the codebase
- Avoid copy-paste programming
### 4. YAGNI (You Aren't Gonna Need It)
- Don't build features before they're needed
- Avoid speculative generality
- Add complexity only when required
- Start simple, refactor when needed
## Python Standards
### Variable Naming
```python
# GOOD: Descriptive names
invoice_number = "INV-2024-001"
is_valid_document = True
total_confidence_score = 0.95
# BAD: Unclear names
inv = "INV-2024-001"
flag = True
x = 0.95
```
### Function Naming
```python
# GOOD: Verb-noun pattern with type hints
def extract_invoice_fields(pdf_path: Path) -> dict[str, str]:
"""Extract fields from invoice PDF."""
...
def calculate_confidence(predictions: list[float]) -> float:
"""Calculate average confidence score."""
...
def is_valid_bankgiro(value: str) -> bool:
"""Check if value is valid Bankgiro number."""
...
# BAD: Unclear or noun-only
def invoice(path):
...
def confidence(p):
...
def bankgiro(v):
...
```
### Type Hints (REQUIRED)
```python
# GOOD: Full type annotations
from typing import Optional
from pathlib import Path
from dataclasses import dataclass
@dataclass
class InferenceResult:
document_id: str
fields: dict[str, str]
confidence: dict[str, float]
processing_time_ms: float
def process_document(
pdf_path: Path,
confidence_threshold: float = 0.5
) -> InferenceResult:
"""Process PDF and return extracted fields."""
...
# BAD: No type hints
def process_document(pdf_path, confidence_threshold=0.5):
...
```
### Immutability Pattern (CRITICAL)
```python
# GOOD: Create new objects, don't mutate
def update_fields(fields: dict[str, str], updates: dict[str, str]) -> dict[str, str]:
return {**fields, **updates}
def add_item(items: list[str], new_item: str) -> list[str]:
return [*items, new_item]
# BAD: Direct mutation
def update_fields(fields: dict[str, str], updates: dict[str, str]) -> dict[str, str]:
fields.update(updates) # MUTATION!
return fields
def add_item(items: list[str], new_item: str) -> list[str]:
items.append(new_item) # MUTATION!
return items
```
### Error Handling
```python
import logging
logger = logging.getLogger(__name__)
# GOOD: Comprehensive error handling with logging
def load_model(model_path: Path) -> Model:
"""Load YOLO model from path."""
try:
if not model_path.exists():
raise FileNotFoundError(f"Model not found: {model_path}")
model = YOLO(str(model_path))
logger.info(f"Model loaded: {model_path}")
return model
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise RuntimeError(f"Model loading failed: {model_path}") from e
# BAD: No error handling
def load_model(model_path):
return YOLO(str(model_path))
# BAD: Bare except
def load_model(model_path):
try:
return YOLO(str(model_path))
except: # Never use bare except!
return None
```
### Async Best Practices
```python
import asyncio
# GOOD: Parallel execution when possible
async def process_batch(pdf_paths: list[Path]) -> list[InferenceResult]:
tasks = [process_document(path) for path in pdf_paths]
results = await asyncio.gather(*tasks, return_exceptions=True)
# Handle exceptions
valid_results = []
for path, result in zip(pdf_paths, results):
if isinstance(result, Exception):
logger.error(f"Failed to process {path}: {result}")
else:
valid_results.append(result)
return valid_results
# BAD: Sequential when unnecessary
async def process_batch(pdf_paths: list[Path]) -> list[InferenceResult]:
results = []
for path in pdf_paths:
result = await process_document(path)
results.append(result)
return results
```
### Context Managers
```python
from contextlib import contextmanager
from pathlib import Path
import tempfile
# GOOD: Proper resource management
@contextmanager
def temp_pdf_copy(pdf_path: Path):
"""Create temporary copy of PDF for processing."""
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp:
tmp.write(pdf_path.read_bytes())
tmp_path = Path(tmp.name)
try:
yield tmp_path
finally:
tmp_path.unlink(missing_ok=True)
# Usage
with temp_pdf_copy(original_pdf) as tmp_pdf:
result = process_pdf(tmp_pdf)
```
## FastAPI Best Practices
### Route Structure
```python
from fastapi import APIRouter, HTTPException, Depends, Query, File, UploadFile
from pydantic import BaseModel
router = APIRouter(prefix="/api/v1", tags=["inference"])
class InferenceResponse(BaseModel):
success: bool
document_id: str
fields: dict[str, str]
confidence: dict[str, float]
processing_time_ms: float
@router.post("/infer", response_model=InferenceResponse)
async def infer_document(
file: UploadFile = File(...),
confidence_threshold: float = Query(0.5, ge=0.0, le=1.0)
) -> InferenceResponse:
"""Process invoice PDF and extract fields."""
if not file.filename.endswith(".pdf"):
raise HTTPException(status_code=400, detail="Only PDF files accepted")
result = await inference_service.process(file, confidence_threshold)
return InferenceResponse(
success=True,
document_id=result.document_id,
fields=result.fields,
confidence=result.confidence,
processing_time_ms=result.processing_time_ms
)
```
### Input Validation with Pydantic
```python
from pydantic import BaseModel, Field, field_validator
from datetime import date
import re
class InvoiceData(BaseModel):
invoice_number: str = Field(..., min_length=1, max_length=50)
invoice_date: date
amount: float = Field(..., gt=0)
bankgiro: str | None = None
ocr_number: str | None = None
@field_validator("bankgiro")
@classmethod
def validate_bankgiro(cls, v: str | None) -> str | None:
if v is None:
return None
# Bankgiro: 7-8 digits
cleaned = re.sub(r"[^0-9]", "", v)
if not (7 <= len(cleaned) <= 8):
raise ValueError("Bankgiro must be 7-8 digits")
return cleaned
@field_validator("ocr_number")
@classmethod
def validate_ocr(cls, v: str | None) -> str | None:
if v is None:
return None
# OCR: 2-25 digits
cleaned = re.sub(r"[^0-9]", "", v)
if not (2 <= len(cleaned) <= 25):
raise ValueError("OCR must be 2-25 digits")
return cleaned
```
### Response Format
```python
from pydantic import BaseModel
from typing import Generic, TypeVar
T = TypeVar("T")
class ApiResponse(BaseModel, Generic[T]):
success: bool
data: T | None = None
error: str | None = None
meta: dict | None = None
# Success response
return ApiResponse(
success=True,
data=result,
meta={"processing_time_ms": elapsed_ms}
)
# Error response
return ApiResponse(
success=False,
error="Invalid PDF format"
)
```
## File Organization
### Project Structure
```
src/
├── cli/ # Command-line interfaces
│ ├── autolabel.py
│ ├── train.py
│ └── infer.py
├── pdf/ # PDF processing
│ ├── extractor.py
│ └── renderer.py
├── ocr/ # OCR processing
│ ├── paddle_ocr.py
│ └── machine_code_parser.py
├── inference/ # Inference pipeline
│ ├── pipeline.py
│ ├── yolo_detector.py
│ └── field_extractor.py
├── normalize/ # Field normalization
│ ├── base.py
│ ├── date_normalizer.py
│ └── amount_normalizer.py
├── web/ # FastAPI application
│ ├── app.py
│ ├── routes.py
│ ├── services.py
│ └── schemas.py
└── utils/ # Shared utilities
├── validators.py
├── text_cleaner.py
└── logging.py
tests/ # Mirror of src structure
├── test_pdf/
├── test_ocr/
└── test_inference/
```
### File Naming
```
src/ocr/paddle_ocr.py # snake_case for modules
src/inference/yolo_detector.py # snake_case for modules
tests/test_paddle_ocr.py # test_ prefix for tests
config.py # snake_case for config
```
### Module Size Guidelines
- **Maximum**: 800 lines per file
- **Typical**: 200-400 lines per file
- **Functions**: Max 50 lines each
- Extract utilities when modules grow too large
## Comments & Documentation
### When to Comment
```python
# GOOD: Explain WHY, not WHAT
# Swedish Bankgiro uses Luhn algorithm with weight [1,2,1,2...]
def validate_bankgiro_checksum(bankgiro: str) -> bool:
...
# Payment line format: 7 groups separated by #, checksum at end
def parse_payment_line(line: str) -> PaymentLineData:
...
# BAD: Stating the obvious
# Increment counter by 1
count += 1
# Set name to user's name
name = user.name
```
### Docstrings for Public APIs
```python
def extract_invoice_fields(
pdf_path: Path,
confidence_threshold: float = 0.5,
use_gpu: bool = True
) -> InferenceResult:
"""Extract structured fields from Swedish invoice PDF.
Uses YOLOv11 for field detection and PaddleOCR for text extraction.
Applies field-specific normalization and validation.
Args:
pdf_path: Path to the invoice PDF file.
confidence_threshold: Minimum confidence for field detection (0.0-1.0).
use_gpu: Whether to use GPU acceleration.
Returns:
InferenceResult containing extracted fields and confidence scores.
Raises:
FileNotFoundError: If PDF file doesn't exist.
ProcessingError: If OCR or detection fails.
Example:
>>> result = extract_invoice_fields(Path("invoice.pdf"))
>>> print(result.fields["invoice_number"])
"INV-2024-001"
"""
...
```
## Performance Best Practices
### Caching
```python
from functools import lru_cache
from cachetools import TTLCache
# Static data: LRU cache
@lru_cache(maxsize=100)
def get_field_config(field_name: str) -> FieldConfig:
"""Load field configuration (cached)."""
return load_config(field_name)
# Dynamic data: TTL cache
_document_cache = TTLCache(maxsize=1000, ttl=300) # 5 minutes
def get_document_cached(doc_id: str) -> Document | None:
if doc_id in _document_cache:
return _document_cache[doc_id]
doc = repo.find_by_id(doc_id)
if doc:
_document_cache[doc_id] = doc
return doc
```
### Database Queries
```python
# GOOD: Select only needed columns
cur.execute("""
SELECT id, status, fields->>'invoice_number'
FROM documents
WHERE status = %s
LIMIT %s
""", ('processed', 10))
# BAD: Select everything
cur.execute("SELECT * FROM documents")
# GOOD: Batch operations
cur.executemany(
"INSERT INTO labels (doc_id, field, value) VALUES (%s, %s, %s)",
[(doc_id, f, v) for f, v in fields.items()]
)
# BAD: Individual inserts in loop
for field, value in fields.items():
cur.execute("INSERT INTO labels ...", (doc_id, field, value))
```
### Lazy Loading
```python
class InferencePipeline:
def __init__(self, model_path: Path):
self.model_path = model_path
self._model: YOLO | None = None
self._ocr: PaddleOCR | None = None
@property
def model(self) -> YOLO:
"""Lazy load YOLO model."""
if self._model is None:
self._model = YOLO(str(self.model_path))
return self._model
@property
def ocr(self) -> PaddleOCR:
"""Lazy load PaddleOCR."""
if self._ocr is None:
self._ocr = PaddleOCR(use_angle_cls=True, lang="latin")
return self._ocr
```
## Testing Standards
### Test Structure (AAA Pattern)
```python
def test_extract_bankgiro_valid():
# Arrange
text = "Bankgiro: 123-4567"
# Act
result = extract_bankgiro(text)
# Assert
assert result == "1234567"
def test_extract_bankgiro_invalid_returns_none():
# Arrange
text = "No bankgiro here"
# Act
result = extract_bankgiro(text)
# Assert
assert result is None
```
### Test Naming
```python
# GOOD: Descriptive test names
def test_parse_payment_line_extracts_all_fields(): ...
def test_parse_payment_line_handles_missing_checksum(): ...
def test_validate_ocr_returns_false_for_invalid_checksum(): ...
# BAD: Vague test names
def test_parse(): ...
def test_works(): ...
def test_payment_line(): ...
```
### Fixtures
```python
import pytest
from pathlib import Path
@pytest.fixture
def sample_invoice_pdf(tmp_path: Path) -> Path:
"""Create sample invoice PDF for testing."""
pdf_path = tmp_path / "invoice.pdf"
# Create test PDF...
return pdf_path
@pytest.fixture
def inference_pipeline(sample_model_path: Path) -> InferencePipeline:
"""Create inference pipeline with test model."""
return InferencePipeline(sample_model_path)
def test_process_invoice(inference_pipeline, sample_invoice_pdf):
result = inference_pipeline.process(sample_invoice_pdf)
assert result.fields.get("invoice_number") is not None
```
## Code Smell Detection
### 1. Long Functions
```python
# BAD: Function > 50 lines
def process_document():
# 100 lines of code...
# GOOD: Split into smaller functions
def process_document(pdf_path: Path) -> InferenceResult:
image = render_pdf(pdf_path)
detections = detect_fields(image)
ocr_results = extract_text(image, detections)
fields = normalize_fields(ocr_results)
return build_result(fields)
```
### 2. Deep Nesting
```python
# BAD: 5+ levels of nesting
if document:
if document.is_valid:
if document.has_fields:
if field in document.fields:
if document.fields[field]:
# Do something
# GOOD: Early returns
if not document:
return None
if not document.is_valid:
return None
if not document.has_fields:
return None
if field not in document.fields:
return None
if not document.fields[field]:
return None
# Do something
```
### 3. Magic Numbers
```python
# BAD: Unexplained numbers
if confidence > 0.5:
...
time.sleep(3)
# GOOD: Named constants
CONFIDENCE_THRESHOLD = 0.5
RETRY_DELAY_SECONDS = 3
if confidence > CONFIDENCE_THRESHOLD:
...
time.sleep(RETRY_DELAY_SECONDS)
```
### 4. Mutable Default Arguments
```python
# BAD: Mutable default argument
def process_fields(fields: list = []): # DANGEROUS!
fields.append("new_field")
return fields
# GOOD: Use None as default
def process_fields(fields: list | None = None) -> list:
if fields is None:
fields = []
return [*fields, "new_field"]
```
## Logging Standards
```python
import logging
# Module-level logger
logger = logging.getLogger(__name__)
# GOOD: Appropriate log levels
logger.debug("Processing document: %s", doc_id)
logger.info("Document processed successfully: %s", doc_id)
logger.warning("Low confidence score: %.2f", confidence)
logger.error("Failed to process document: %s", error)
# GOOD: Structured logging with extra data
logger.info(
"Inference complete",
extra={
"document_id": doc_id,
"field_count": len(fields),
"processing_time_ms": elapsed_ms
}
)
# BAD: Using print()
print(f"Processing {doc_id}") # Never in production!
```
**Remember**: Code quality is not negotiable. Clear, maintainable Python code with proper type hints enables confident development and refactoring.

View File

@@ -0,0 +1,80 @@
---
name: continuous-learning
description: Automatically extract reusable patterns from Claude Code sessions and save them as learned skills for future use.
---
# Continuous Learning Skill
Automatically evaluates Claude Code sessions on end to extract reusable patterns that can be saved as learned skills.
## How It Works
This skill runs as a **Stop hook** at the end of each session:
1. **Session Evaluation**: Checks if session has enough messages (default: 10+)
2. **Pattern Detection**: Identifies extractable patterns from the session
3. **Skill Extraction**: Saves useful patterns to `~/.claude/skills/learned/`
## Configuration
Edit `config.json` to customize:
```json
{
"min_session_length": 10,
"extraction_threshold": "medium",
"auto_approve": false,
"learned_skills_path": "~/.claude/skills/learned/",
"patterns_to_detect": [
"error_resolution",
"user_corrections",
"workarounds",
"debugging_techniques",
"project_specific"
],
"ignore_patterns": [
"simple_typos",
"one_time_fixes",
"external_api_issues"
]
}
```
## Pattern Types
| Pattern | Description |
|---------|-------------|
| `error_resolution` | How specific errors were resolved |
| `user_corrections` | Patterns from user corrections |
| `workarounds` | Solutions to framework/library quirks |
| `debugging_techniques` | Effective debugging approaches |
| `project_specific` | Project-specific conventions |
## Hook Setup
Add to your `~/.claude/settings.json`:
```json
{
"hooks": {
"Stop": [{
"matcher": "*",
"hooks": [{
"type": "command",
"command": "~/.claude/skills/continuous-learning/evaluate-session.sh"
}]
}]
}
}
```
## Why Stop Hook?
- **Lightweight**: Runs once at session end
- **Non-blocking**: Doesn't add latency to every message
- **Complete context**: Has access to full session transcript
## Related
- [The Longform Guide](https://x.com/affaanmustafa/status/2014040193557471352) - Section on continuous learning
- `/learn` command - Manual pattern extraction mid-session

View File

@@ -0,0 +1,18 @@
{
"min_session_length": 10,
"extraction_threshold": "medium",
"auto_approve": false,
"learned_skills_path": "~/.claude/skills/learned/",
"patterns_to_detect": [
"error_resolution",
"user_corrections",
"workarounds",
"debugging_techniques",
"project_specific"
],
"ignore_patterns": [
"simple_typos",
"one_time_fixes",
"external_api_issues"
]
}

View File

@@ -0,0 +1,60 @@
#!/bin/bash
# Continuous Learning - Session Evaluator
# Runs on Stop hook to extract reusable patterns from Claude Code sessions
#
# Why Stop hook instead of UserPromptSubmit:
# - Stop runs once at session end (lightweight)
# - UserPromptSubmit runs every message (heavy, adds latency)
#
# Hook config (in ~/.claude/settings.json):
# {
# "hooks": {
# "Stop": [{
# "matcher": "*",
# "hooks": [{
# "type": "command",
# "command": "~/.claude/skills/continuous-learning/evaluate-session.sh"
# }]
# }]
# }
# }
#
# Patterns to detect: error_resolution, debugging_techniques, workarounds, project_specific
# Patterns to ignore: simple_typos, one_time_fixes, external_api_issues
# Extracted skills saved to: ~/.claude/skills/learned/
set -e
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
CONFIG_FILE="$SCRIPT_DIR/config.json"
LEARNED_SKILLS_PATH="${HOME}/.claude/skills/learned"
MIN_SESSION_LENGTH=10
# Load config if exists
if [ -f "$CONFIG_FILE" ]; then
MIN_SESSION_LENGTH=$(jq -r '.min_session_length // 10' "$CONFIG_FILE")
LEARNED_SKILLS_PATH=$(jq -r '.learned_skills_path // "~/.claude/skills/learned/"' "$CONFIG_FILE" | sed "s|~|$HOME|")
fi
# Ensure learned skills directory exists
mkdir -p "$LEARNED_SKILLS_PATH"
# Get transcript path from environment (set by Claude Code)
transcript_path="${CLAUDE_TRANSCRIPT_PATH:-}"
if [ -z "$transcript_path" ] || [ ! -f "$transcript_path" ]; then
exit 0
fi
# Count messages in session
message_count=$(grep -c '"type":"user"' "$transcript_path" 2>/dev/null || echo "0")
# Skip short sessions
if [ "$message_count" -lt "$MIN_SESSION_LENGTH" ]; then
echo "[ContinuousLearning] Session too short ($message_count messages), skipping" >&2
exit 0
fi
# Signal to Claude that session should be evaluated for extractable patterns
echo "[ContinuousLearning] Session has $message_count messages - evaluate for extractable patterns" >&2
echo "[ContinuousLearning] Save learned skills to: $LEARNED_SKILLS_PATH" >&2

View File

@@ -1,245 +0,0 @@
---
name: dev-builder
description: 根据 Product-Spec.md 初始化项目、安装依赖、实现代码。与 product-spec-builder 配套使用,帮助用户将需求文档转化为可运行的代码项目。
---
[角色]
你是一位经验丰富的全栈开发工程师。
你能够根据产品需求文档快速搭建项目,选择合适的技术栈,编写高质量的代码。你注重代码结构清晰、可维护性强。
[任务]
读取 Product-Spec.md完成以下工作
1. 分析需求,确定项目类型和技术栈
2. 初始化项目,创建目录结构
3. 安装必要依赖,配置开发环境
4. 实现代码UI、功能、AI 集成)
最终交付可运行的项目代码。
[总体规则]
- 必须先读取 Product-Spec.md不存在则提示用户先完成需求收集
- 每个阶段完成后输出进度反馈
- 如有原型图,开发时参考原型图的视觉设计
- 代码要简洁、可读、可维护
- 优先使用简单方案,不过度设计
- 只改与当前任务相关的文件,禁止「顺手升级依赖」「全局格式化」「无关重命名」
- 始终使用中文与用户交流
[项目类型判断]
根据 Product Spec 的 UI 布局和技术说明判断:
- 有 UI + 纯前端/无需服务器 → 纯前端 Web 应用
- 有 UI + 需要后端/数据库/API → 全栈 Web 应用
- 无 UI + 命令行操作 → CLI 工具
- 只是 API 服务 → 后端服务
[技术栈选择]
| 项目类型 | 推荐技术栈 |
|---------|-----------|
| 纯前端 Web 应用 | React + Vite + TypeScript + Tailwind |
| 全栈 Web 应用 | Next.js + TypeScript + Tailwind |
| CLI 工具 | Node.js + TypeScript + Commander |
| 后端服务 | Express + TypeScript |
| AI/ML 应用 | Python + FastAPI + PyTorch/TensorFlow |
| 数据处理工具 | Python + Pandas + NumPy |
**选择原则**
- Product Spec 技术说明有指定 → 用指定的
- 没指定 → 用推荐方案
- 有疑问 → 询问用户
[AI 研发方向]
**适用场景**
- 机器学习模型训练与推理
- 计算机视觉目标检测、OCR、图像分类
- 自然语言处理(文本分类、命名实体识别、对话系统)
- 大语言模型应用RAG、Agent、Prompt Engineering
- 数据分析与可视化
**技术栈推荐**
| 方向 | 推荐技术栈 |
|-----|-----------|
| 深度学习 | PyTorch + Lightning + Weights & Biases |
| 目标检测 | Ultralytics YOLO + OpenCV |
| OCR | PaddleOCR / EasyOCR / Tesseract |
| NLP | Transformers + spaCy |
| LLM 应用 | LangChain / LlamaIndex + OpenAI API |
| 数据处理 | Pandas + Polars + DuckDB |
| 模型部署 | FastAPI + Docker + ONNX Runtime |
**项目结构AI/ML 项目)**
```
project/
├── src/ # 源代码
│ ├── data/ # 数据加载与预处理
│ ├── models/ # 模型定义
│ ├── training/ # 训练逻辑
│ ├── inference/ # 推理逻辑
│ └── utils/ # 工具函数
├── configs/ # 配置文件YAML
├── data/ # 数据目录
│ ├── raw/ # 原始数据(不修改)
│ └── processed/ # 处理后数据
├── models/ # 训练好的模型权重
├── notebooks/ # 实验 Notebook
├── tests/ # 测试代码
└── scripts/ # 运行脚本
```
**AI 研发规范**
- **可复现性**固定随机种子random、numpy、torch记录实验配置
- **数据管理**:原始数据不可变,处理数据版本化
- **实验追踪**:使用 MLflow/W&B 记录指标、参数、产物
- **配置驱动**:所有超参数放 YAML 配置,禁止硬编码
- **类型安全**:使用 Pydantic 定义数据结构
- **日志规范**:使用 logging 模块,不用 print
**模型训练检查项**
- ✅ 数据集划分train/val/test比例合理
- ✅ 早停机制Early Stopping防止过拟合
- ✅ 学习率调度器配置
- ✅ 模型检查点保存策略
- ✅ 验证集指标监控
- ✅ GPU 内存管理(混合精度训练)
**部署注意事项**
- 模型导出为 ONNX 格式提升推理速度
- API 接口使用异步处理提升并发
- 大文件使用流式传输
- 配置健康检查端点
- 日志和指标监控
[初始化提醒]
**项目名称规范**
- 只能用小写字母、数字、短横线(如 my-app
- 不能有空格、&、# 等特殊字符
**npm 报错时**:可尝试 pnpm 或 yarn
[依赖选择]
**原则**:只装需要的,不装「可能用到」的
[环境变量配置]
**⚠️ 安全警告**
- Vite 纯前端:`VITE_` 前缀变量**会暴露给浏览器**,不能存放 API Key
- Next.js不加 `NEXT_PUBLIC_` 前缀的变量只在服务端可用(安全)
**涉及 AI API 调用时**
- 推荐用 Next.jsAPI Key 只在服务端使用,安全)
- 备选:创建独立后端代理请求
- 仅限开发/演示:使用 VITE_ 前缀(必须提醒用户安全风险)
**文件规范**
- 创建 `.env.example` 作为模板(提交到 Git
- 实际值放 `.env.local`(不提交,确保 .gitignore 包含)
[工作流程]
[启动阶段]
目的:检查前置条件,读取项目文档
第一步:检测 Product Spec
检测 Product-Spec.md 是否存在
不存在 → 提示:「未找到 Product-Spec.md请先使用 /prd 完成需求收集。」,终止流程
存在 → 继续
第二步:读取项目文档
加载 Product-Spec.md
提取产品概述、功能需求、UI 布局、技术说明、AI 能力需求
第三步:检查原型图
检查 UI-Prompts.md 是否存在
存在 → 询问:「我看到你已经生成了原型图提示词,如果有生成的原型图图片,可以发给我参考。」
不存在 → 询问:「是否有原型图或设计稿可以参考?有的话可以发给我。」
用户发送图片 → 记录,开发时参考
用户说没有 → 继续
[技术方案阶段]
目的:确定技术栈并告知用户
分析项目类型,选择技术栈,列出主要依赖
输出方案后直接进入下一阶段:
"📦 **技术方案**
**项目类型**[类型]
**技术栈**[技术栈]
**主要依赖**
- [依赖1][用途]
- [依赖2][用途]"
[项目搭建阶段]
目的:初始化项目,创建基础结构
执行:初始化项目 → 配置 TailwindVite 项目)→ 安装功能依赖 → 配置环境变量(如需要)
每完成一步输出进度反馈
[代码实现阶段]
目的:实现功能代码
第一步:创建基础布局
根据 Product Spec 的 UI 布局章节创建整体布局结构
如有原型图,参考其视觉设计
第二步:实现 UI 组件
根据 UI 布局的控件规范创建组件
使用 Tailwind 编写样式
第三步:实现功能逻辑
核心功能优先实现,辅助功能其次
添加状态管理,实现用户交互逻辑
第四步:集成 AI 能力(如有)
创建 AI 服务模块,实现调用函数
处理 API Key 读取,在相应功能中集成
第五步:完善用户体验
添加 loading 状态、错误处理、空状态提示、输入校验
[完成阶段]
目的:输出开发结果总结
输出:
"✅ **项目开发完成!**
**技术栈**[技术栈]
**项目结构**
```
[实际目录结构]
```
**已实现功能**
- ✅ [功能1]
- ✅ [功能2]
- ...
**AI 能力集成**
- [已集成的 AI 能力,或「无」]
**环境变量**
- [需要配置的环境变量,或「无需配置」]"
[质量门槛]
每个功能点至少满足:
**必须**
- ✅ 主路径可用Happy Path 能跑通)
- ✅ 异常路径清晰(错误提示、重试/回退)
- ✅ loading 状态(涉及异步操作时)
- ✅ 空状态处理(无数据时的提示)
- ✅ 基础输入校验(必填、格式)
- ✅ 敏感信息不写入代码API Key 走环境变量)
**建议**
- 基础可访问性(可点击、可键盘操作)
- 响应式适配(如需支持移动端)
[代码规范]
- 单个文件不超过 300 行,超过则拆分
- 优先使用函数组件 + Hooks
- 样式优先用 Tailwind
[初始化]
执行 [启动阶段]

View File

@@ -0,0 +1,221 @@
# Eval Harness Skill
A formal evaluation framework for Claude Code sessions, implementing eval-driven development (EDD) principles.
## Philosophy
Eval-Driven Development treats evals as the "unit tests of AI development":
- Define expected behavior BEFORE implementation
- Run evals continuously during development
- Track regressions with each change
- Use pass@k metrics for reliability measurement
## Eval Types
### Capability Evals
Test if Claude can do something it couldn't before:
```markdown
[CAPABILITY EVAL: feature-name]
Task: Description of what Claude should accomplish
Success Criteria:
- [ ] Criterion 1
- [ ] Criterion 2
- [ ] Criterion 3
Expected Output: Description of expected result
```
### Regression Evals
Ensure changes don't break existing functionality:
```markdown
[REGRESSION EVAL: feature-name]
Baseline: SHA or checkpoint name
Tests:
- existing-test-1: PASS/FAIL
- existing-test-2: PASS/FAIL
- existing-test-3: PASS/FAIL
Result: X/Y passed (previously Y/Y)
```
## Grader Types
### 1. Code-Based Grader
Deterministic checks using code:
```bash
# Check if file contains expected pattern
grep -q "export function handleAuth" src/auth.ts && echo "PASS" || echo "FAIL"
# Check if tests pass
npm test -- --testPathPattern="auth" && echo "PASS" || echo "FAIL"
# Check if build succeeds
npm run build && echo "PASS" || echo "FAIL"
```
### 2. Model-Based Grader
Use Claude to evaluate open-ended outputs:
```markdown
[MODEL GRADER PROMPT]
Evaluate the following code change:
1. Does it solve the stated problem?
2. Is it well-structured?
3. Are edge cases handled?
4. Is error handling appropriate?
Score: 1-5 (1=poor, 5=excellent)
Reasoning: [explanation]
```
### 3. Human Grader
Flag for manual review:
```markdown
[HUMAN REVIEW REQUIRED]
Change: Description of what changed
Reason: Why human review is needed
Risk Level: LOW/MEDIUM/HIGH
```
## Metrics
### pass@k
"At least one success in k attempts"
- pass@1: First attempt success rate
- pass@3: Success within 3 attempts
- Typical target: pass@3 > 90%
### pass^k
"All k trials succeed"
- Higher bar for reliability
- pass^3: 3 consecutive successes
- Use for critical paths
## Eval Workflow
### 1. Define (Before Coding)
```markdown
## EVAL DEFINITION: feature-xyz
### Capability Evals
1. Can create new user account
2. Can validate email format
3. Can hash password securely
### Regression Evals
1. Existing login still works
2. Session management unchanged
3. Logout flow intact
### Success Metrics
- pass@3 > 90% for capability evals
- pass^3 = 100% for regression evals
```
### 2. Implement
Write code to pass the defined evals.
### 3. Evaluate
```bash
# Run capability evals
[Run each capability eval, record PASS/FAIL]
# Run regression evals
npm test -- --testPathPattern="existing"
# Generate report
```
### 4. Report
```markdown
EVAL REPORT: feature-xyz
========================
Capability Evals:
create-user: PASS (pass@1)
validate-email: PASS (pass@2)
hash-password: PASS (pass@1)
Overall: 3/3 passed
Regression Evals:
login-flow: PASS
session-mgmt: PASS
logout-flow: PASS
Overall: 3/3 passed
Metrics:
pass@1: 67% (2/3)
pass@3: 100% (3/3)
Status: READY FOR REVIEW
```
## Integration Patterns
### Pre-Implementation
```
/eval define feature-name
```
Creates eval definition file at `.claude/evals/feature-name.md`
### During Implementation
```
/eval check feature-name
```
Runs current evals and reports status
### Post-Implementation
```
/eval report feature-name
```
Generates full eval report
## Eval Storage
Store evals in project:
```
.claude/
evals/
feature-xyz.md # Eval definition
feature-xyz.log # Eval run history
baseline.json # Regression baselines
```
## Best Practices
1. **Define evals BEFORE coding** - Forces clear thinking about success criteria
2. **Run evals frequently** - Catch regressions early
3. **Track pass@k over time** - Monitor reliability trends
4. **Use code graders when possible** - Deterministic > probabilistic
5. **Human review for security** - Never fully automate security checks
6. **Keep evals fast** - Slow evals don't get run
7. **Version evals with code** - Evals are first-class artifacts
## Example: Adding Authentication
```markdown
## EVAL: add-authentication
### Phase 1: Define (10 min)
Capability Evals:
- [ ] User can register with email/password
- [ ] User can login with valid credentials
- [ ] Invalid credentials rejected with proper error
- [ ] Sessions persist across page reloads
- [ ] Logout clears session
Regression Evals:
- [ ] Public routes still accessible
- [ ] API responses unchanged
- [ ] Database schema compatible
### Phase 2: Implement (varies)
[Write code]
### Phase 3: Evaluate
Run: /eval check add-authentication
### Phase 4: Report
EVAL REPORT: add-authentication
==============================
Capability: 5/5 passed (pass@3: 100%)
Regression: 3/3 passed (pass^3: 100%)
Status: SHIP IT
```

View File

@@ -0,0 +1,631 @@
---
name: frontend-patterns
description: Frontend development patterns for React, Next.js, state management, performance optimization, and UI best practices.
---
# Frontend Development Patterns
Modern frontend patterns for React, Next.js, and performant user interfaces.
## Component Patterns
### Composition Over Inheritance
```typescript
// ✅ GOOD: Component composition
interface CardProps {
children: React.ReactNode
variant?: 'default' | 'outlined'
}
export function Card({ children, variant = 'default' }: CardProps) {
return <div className={`card card-${variant}`}>{children}</div>
}
export function CardHeader({ children }: { children: React.ReactNode }) {
return <div className="card-header">{children}</div>
}
export function CardBody({ children }: { children: React.ReactNode }) {
return <div className="card-body">{children}</div>
}
// Usage
<Card>
<CardHeader>Title</CardHeader>
<CardBody>Content</CardBody>
</Card>
```
### Compound Components
```typescript
interface TabsContextValue {
activeTab: string
setActiveTab: (tab: string) => void
}
const TabsContext = createContext<TabsContextValue | undefined>(undefined)
export function Tabs({ children, defaultTab }: {
children: React.ReactNode
defaultTab: string
}) {
const [activeTab, setActiveTab] = useState(defaultTab)
return (
<TabsContext.Provider value={{ activeTab, setActiveTab }}>
{children}
</TabsContext.Provider>
)
}
export function TabList({ children }: { children: React.ReactNode }) {
return <div className="tab-list">{children}</div>
}
export function Tab({ id, children }: { id: string, children: React.ReactNode }) {
const context = useContext(TabsContext)
if (!context) throw new Error('Tab must be used within Tabs')
return (
<button
className={context.activeTab === id ? 'active' : ''}
onClick={() => context.setActiveTab(id)}
>
{children}
</button>
)
}
// Usage
<Tabs defaultTab="overview">
<TabList>
<Tab id="overview">Overview</Tab>
<Tab id="details">Details</Tab>
</TabList>
</Tabs>
```
### Render Props Pattern
```typescript
interface DataLoaderProps<T> {
url: string
children: (data: T | null, loading: boolean, error: Error | null) => React.ReactNode
}
export function DataLoader<T>({ url, children }: DataLoaderProps<T>) {
const [data, setData] = useState<T | null>(null)
const [loading, setLoading] = useState(true)
const [error, setError] = useState<Error | null>(null)
useEffect(() => {
fetch(url)
.then(res => res.json())
.then(setData)
.catch(setError)
.finally(() => setLoading(false))
}, [url])
return <>{children(data, loading, error)}</>
}
// Usage
<DataLoader<Market[]> url="/api/markets">
{(markets, loading, error) => {
if (loading) return <Spinner />
if (error) return <Error error={error} />
return <MarketList markets={markets!} />
}}
</DataLoader>
```
## Custom Hooks Patterns
### State Management Hook
```typescript
export function useToggle(initialValue = false): [boolean, () => void] {
const [value, setValue] = useState(initialValue)
const toggle = useCallback(() => {
setValue(v => !v)
}, [])
return [value, toggle]
}
// Usage
const [isOpen, toggleOpen] = useToggle()
```
### Async Data Fetching Hook
```typescript
interface UseQueryOptions<T> {
onSuccess?: (data: T) => void
onError?: (error: Error) => void
enabled?: boolean
}
export function useQuery<T>(
key: string,
fetcher: () => Promise<T>,
options?: UseQueryOptions<T>
) {
const [data, setData] = useState<T | null>(null)
const [error, setError] = useState<Error | null>(null)
const [loading, setLoading] = useState(false)
const refetch = useCallback(async () => {
setLoading(true)
setError(null)
try {
const result = await fetcher()
setData(result)
options?.onSuccess?.(result)
} catch (err) {
const error = err as Error
setError(error)
options?.onError?.(error)
} finally {
setLoading(false)
}
}, [fetcher, options])
useEffect(() => {
if (options?.enabled !== false) {
refetch()
}
}, [key, refetch, options?.enabled])
return { data, error, loading, refetch }
}
// Usage
const { data: markets, loading, error, refetch } = useQuery(
'markets',
() => fetch('/api/markets').then(r => r.json()),
{
onSuccess: data => console.log('Fetched', data.length, 'markets'),
onError: err => console.error('Failed:', err)
}
)
```
### Debounce Hook
```typescript
export function useDebounce<T>(value: T, delay: number): T {
const [debouncedValue, setDebouncedValue] = useState<T>(value)
useEffect(() => {
const handler = setTimeout(() => {
setDebouncedValue(value)
}, delay)
return () => clearTimeout(handler)
}, [value, delay])
return debouncedValue
}
// Usage
const [searchQuery, setSearchQuery] = useState('')
const debouncedQuery = useDebounce(searchQuery, 500)
useEffect(() => {
if (debouncedQuery) {
performSearch(debouncedQuery)
}
}, [debouncedQuery])
```
## State Management Patterns
### Context + Reducer Pattern
```typescript
interface State {
markets: Market[]
selectedMarket: Market | null
loading: boolean
}
type Action =
| { type: 'SET_MARKETS'; payload: Market[] }
| { type: 'SELECT_MARKET'; payload: Market }
| { type: 'SET_LOADING'; payload: boolean }
function reducer(state: State, action: Action): State {
switch (action.type) {
case 'SET_MARKETS':
return { ...state, markets: action.payload }
case 'SELECT_MARKET':
return { ...state, selectedMarket: action.payload }
case 'SET_LOADING':
return { ...state, loading: action.payload }
default:
return state
}
}
const MarketContext = createContext<{
state: State
dispatch: Dispatch<Action>
} | undefined>(undefined)
export function MarketProvider({ children }: { children: React.ReactNode }) {
const [state, dispatch] = useReducer(reducer, {
markets: [],
selectedMarket: null,
loading: false
})
return (
<MarketContext.Provider value={{ state, dispatch }}>
{children}
</MarketContext.Provider>
)
}
export function useMarkets() {
const context = useContext(MarketContext)
if (!context) throw new Error('useMarkets must be used within MarketProvider')
return context
}
```
## Performance Optimization
### Memoization
```typescript
// ✅ useMemo for expensive computations
const sortedMarkets = useMemo(() => {
return markets.sort((a, b) => b.volume - a.volume)
}, [markets])
// ✅ useCallback for functions passed to children
const handleSearch = useCallback((query: string) => {
setSearchQuery(query)
}, [])
// ✅ React.memo for pure components
export const MarketCard = React.memo<MarketCardProps>(({ market }) => {
return (
<div className="market-card">
<h3>{market.name}</h3>
<p>{market.description}</p>
</div>
)
})
```
### Code Splitting & Lazy Loading
```typescript
import { lazy, Suspense } from 'react'
// ✅ Lazy load heavy components
const HeavyChart = lazy(() => import('./HeavyChart'))
const ThreeJsBackground = lazy(() => import('./ThreeJsBackground'))
export function Dashboard() {
return (
<div>
<Suspense fallback={<ChartSkeleton />}>
<HeavyChart data={data} />
</Suspense>
<Suspense fallback={null}>
<ThreeJsBackground />
</Suspense>
</div>
)
}
```
### Virtualization for Long Lists
```typescript
import { useVirtualizer } from '@tanstack/react-virtual'
export function VirtualMarketList({ markets }: { markets: Market[] }) {
const parentRef = useRef<HTMLDivElement>(null)
const virtualizer = useVirtualizer({
count: markets.length,
getScrollElement: () => parentRef.current,
estimateSize: () => 100, // Estimated row height
overscan: 5 // Extra items to render
})
return (
<div ref={parentRef} style={{ height: '600px', overflow: 'auto' }}>
<div
style={{
height: `${virtualizer.getTotalSize()}px`,
position: 'relative'
}}
>
{virtualizer.getVirtualItems().map(virtualRow => (
<div
key={virtualRow.index}
style={{
position: 'absolute',
top: 0,
left: 0,
width: '100%',
height: `${virtualRow.size}px`,
transform: `translateY(${virtualRow.start}px)`
}}
>
<MarketCard market={markets[virtualRow.index]} />
</div>
))}
</div>
</div>
)
}
```
## Form Handling Patterns
### Controlled Form with Validation
```typescript
interface FormData {
name: string
description: string
endDate: string
}
interface FormErrors {
name?: string
description?: string
endDate?: string
}
export function CreateMarketForm() {
const [formData, setFormData] = useState<FormData>({
name: '',
description: '',
endDate: ''
})
const [errors, setErrors] = useState<FormErrors>({})
const validate = (): boolean => {
const newErrors: FormErrors = {}
if (!formData.name.trim()) {
newErrors.name = 'Name is required'
} else if (formData.name.length > 200) {
newErrors.name = 'Name must be under 200 characters'
}
if (!formData.description.trim()) {
newErrors.description = 'Description is required'
}
if (!formData.endDate) {
newErrors.endDate = 'End date is required'
}
setErrors(newErrors)
return Object.keys(newErrors).length === 0
}
const handleSubmit = async (e: React.FormEvent) => {
e.preventDefault()
if (!validate()) return
try {
await createMarket(formData)
// Success handling
} catch (error) {
// Error handling
}
}
return (
<form onSubmit={handleSubmit}>
<input
value={formData.name}
onChange={e => setFormData(prev => ({ ...prev, name: e.target.value }))}
placeholder="Market name"
/>
{errors.name && <span className="error">{errors.name}</span>}
{/* Other fields */}
<button type="submit">Create Market</button>
</form>
)
}
```
## Error Boundary Pattern
```typescript
interface ErrorBoundaryState {
hasError: boolean
error: Error | null
}
export class ErrorBoundary extends React.Component<
{ children: React.ReactNode },
ErrorBoundaryState
> {
state: ErrorBoundaryState = {
hasError: false,
error: null
}
static getDerivedStateFromError(error: Error): ErrorBoundaryState {
return { hasError: true, error }
}
componentDidCatch(error: Error, errorInfo: React.ErrorInfo) {
console.error('Error boundary caught:', error, errorInfo)
}
render() {
if (this.state.hasError) {
return (
<div className="error-fallback">
<h2>Something went wrong</h2>
<p>{this.state.error?.message}</p>
<button onClick={() => this.setState({ hasError: false })}>
Try again
</button>
</div>
)
}
return this.props.children
}
}
// Usage
<ErrorBoundary>
<App />
</ErrorBoundary>
```
## Animation Patterns
### Framer Motion Animations
```typescript
import { motion, AnimatePresence } from 'framer-motion'
// ✅ List animations
export function AnimatedMarketList({ markets }: { markets: Market[] }) {
return (
<AnimatePresence>
{markets.map(market => (
<motion.div
key={market.id}
initial={{ opacity: 0, y: 20 }}
animate={{ opacity: 1, y: 0 }}
exit={{ opacity: 0, y: -20 }}
transition={{ duration: 0.3 }}
>
<MarketCard market={market} />
</motion.div>
))}
</AnimatePresence>
)
}
// ✅ Modal animations
export function Modal({ isOpen, onClose, children }: ModalProps) {
return (
<AnimatePresence>
{isOpen && (
<>
<motion.div
className="modal-overlay"
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
exit={{ opacity: 0 }}
onClick={onClose}
/>
<motion.div
className="modal-content"
initial={{ opacity: 0, scale: 0.9, y: 20 }}
animate={{ opacity: 1, scale: 1, y: 0 }}
exit={{ opacity: 0, scale: 0.9, y: 20 }}
>
{children}
</motion.div>
</>
)}
</AnimatePresence>
)
}
```
## Accessibility Patterns
### Keyboard Navigation
```typescript
export function Dropdown({ options, onSelect }: DropdownProps) {
const [isOpen, setIsOpen] = useState(false)
const [activeIndex, setActiveIndex] = useState(0)
const handleKeyDown = (e: React.KeyboardEvent) => {
switch (e.key) {
case 'ArrowDown':
e.preventDefault()
setActiveIndex(i => Math.min(i + 1, options.length - 1))
break
case 'ArrowUp':
e.preventDefault()
setActiveIndex(i => Math.max(i - 1, 0))
break
case 'Enter':
e.preventDefault()
onSelect(options[activeIndex])
setIsOpen(false)
break
case 'Escape':
setIsOpen(false)
break
}
}
return (
<div
role="combobox"
aria-expanded={isOpen}
aria-haspopup="listbox"
onKeyDown={handleKeyDown}
>
{/* Dropdown implementation */}
</div>
)
}
```
### Focus Management
```typescript
export function Modal({ isOpen, onClose, children }: ModalProps) {
const modalRef = useRef<HTMLDivElement>(null)
const previousFocusRef = useRef<HTMLElement | null>(null)
useEffect(() => {
if (isOpen) {
// Save currently focused element
previousFocusRef.current = document.activeElement as HTMLElement
// Focus modal
modalRef.current?.focus()
} else {
// Restore focus when closing
previousFocusRef.current?.focus()
}
}, [isOpen])
return isOpen ? (
<div
ref={modalRef}
role="dialog"
aria-modal="true"
tabIndex={-1}
onKeyDown={e => e.key === 'Escape' && onClose()}
>
{children}
</div>
) : null
}
```
**Remember**: Modern frontend patterns enable maintainable, performant user interfaces. Choose patterns that fit your project complexity.

View File

@@ -1,335 +0,0 @@
---
name: product-spec-builder
description: 当用户表达想要开发产品、应用、工具或任何软件项目时或者用户想要迭代现有功能、新增需求、修改产品规格时使用此技能。0-1 阶段通过深入对话收集需求并生成 Product Spec迭代阶段帮助用户想清楚变更内容并更新现有 Product Spec。
---
[角色]
你是废才,一位看透无数产品生死的资深产品经理。
你见过太多人带着"改变世界"的妄想来找你,最后连需求都说不清楚。
你也见过真正能成事的人——他们不一定聪明,但足够诚实,敢于面对自己想法的漏洞。
你不是来讨好用户的。你是来帮他们把脑子里的浆糊变成可执行的产品文档的。
如果他们的想法有问题,你会直接说。如果他们在自欺欺人,你会戳破。
你的冷酷不是恶意,是效率。情绪是最好的思考燃料,而你擅长点火。
[任务]
**0-1 模式**:通过深入对话收集用户的产品需求,用直白甚至刺耳的追问逼迫用户想清楚,最终生成一份结构完整、细节丰富、可直接用于 AI 开发的 Product Spec 文档,并输出为 .md 文件供用户下载使用。
**迭代模式**:当用户在开发过程中提出新功能、修改需求或迭代想法时,通过追问帮助用户想清楚变更内容,检测与现有 Spec 的冲突,直接更新 Product Spec 文件,并自动记录变更日志。
[第一性原则]
**AI优先原则**:用户提出的所有功能,首先考虑如何用 AI 来实现。
- 遇到任何功能需求,第一反应是:这个能不能用 AI 做?能做到什么程度?
- 主动询问用户这个功能要不要加一个「AI一键优化」或「AI智能推荐」
- 如果用户描述的功能明显可以用 AI 增强,直接建议,不要等用户想到
- 最终输出的 Product Spec 必须明确列出需要的 AI 能力类型
**简单优先原则**:复杂度是产品的敌人。
- 能用现成服务的,不自己造轮子
- 每增加一个功能都要问「真的需要吗」
- 第一版做最小可行产品,验证了再加功能
[技能]
- **需求挖掘**:通过开放式提问引导用户表达想法,捕捉关键信息
- **追问深挖**:针对模糊描述追问细节,不接受"大概"、"可能"、"应该"
- **AI能力识别**:根据功能需求,识别需要的 AI 能力类型(文本、图像、语音等)
- **技术需求引导**:通过业务问题推断技术需求,帮助无编程基础的用户理解技术选择
- **布局设计**:深入挖掘界面布局需求,确保每个页面有清晰的空间规范
- **漏洞识别**:发现用户想法中的矛盾、遗漏、自欺欺人之处,直接指出
- **冲突检测**:在迭代时检测新需求与现有 Spec 的冲突,主动指出并给出解决方案
- **方案引导**:当用户不知道怎么做时,提供 2-3 个选项 + 优劣分析,逼用户选择
- **结构化思维**:将零散信息整理为清晰的产品框架
- **文档输出**:按照标准模板生成专业的 Product Spec输出为 .md 文件
[文件结构]
```
product-spec-builder/
├── SKILL.md # 主 Skill 定义(本文件)
└── templates/
├── product-spec-template.md # Product Spec 输出模板
└── changelog-template.md # 变更记录模板
```
[输出风格]
**语态**
- 直白、冷静,偶尔带着看透世事的冷漠
- 不奉承、不迎合、不说"这个想法很棒"之类的废话
- 该嘲讽时嘲讽,该肯定时也会肯定(但很少)
**原则**
- × 绝不给模棱两可的废话
- × 绝不假装用户的想法没问题(如果有问题就直接说)
- × 绝不浪费时间在无意义的客套上
- ✓ 一针见血的建议,哪怕听起来刺耳
- ✓ 用追问逼迫用户自己想清楚,而不是替他们想
- ✓ 主动建议 AI 增强方案,不等用户开口
- ✓ 偶尔的毒舌是为了激发思考,不是为了伤害
**典型表达**
- "你说的这个功能,用户真的需要,还是你觉得他们需要?"
- "这个手动操作完全可以让 AI 来做,你为什么要让用户自己填?"
- "别跟我说'用户体验好',告诉我具体好在哪里。"
- "你现在描述的这个东西,市面上已经有十个了。你的凭什么能活?"
- "这里要不要加个 AI 一键优化?用户自己填这些参数,你觉得他们填得好吗?"
- "左边放什么右边放什么,你想清楚了吗?还是打算让开发自己猜?"
- "想清楚了?那我们继续。没想清楚?那就继续想。"
[需求维度清单]
在对话过程中,需要收集以下维度的信息(不必按顺序,根据对话自然推进):
**必须收集**没有这些Product Spec 就是废纸):
- 产品定位:这是什么?解决什么问题?凭什么是你来做?
- 目标用户:谁会用?为什么用?不用会死吗?
- 核心功能:必须有什么功能?砍掉什么功能产品就不成立?
- 用户流程:用户怎么用?从打开到完成任务的完整路径是什么?
- AI能力需求哪些功能需要 AI需要哪种类型的 AI 能力?
**尽量收集**有这些Product Spec 才能落地):
- 整体布局:几栏布局?左右还是上下?各区域比例多少?
- 区域内容:每个区域放什么?哪个是输入区,哪个是输出区?
- 控件规范:输入框铺满还是定宽?按钮放哪里?下拉框选项有哪些?
- 输入输出:用户输入什么?系统输出什么?格式是什么?
- 应用场景3-5个具体场景越具体越好
- AI增强点哪些地方可以加「AI一键优化」或「AI智能推荐」
- 技术复杂度:需要用户登录吗?数据存哪里?需要服务器吗?
**可选收集**(锦上添花):
- 技术偏好:有没有特定技术要求?
- 参考产品:有没有可以抄的对象?抄哪里,不抄哪里?
- 优先级:第一期做什么,第二期做什么?
[对话策略]
**开场策略**
- 不废话,直接基于用户已表达的内容开始追问
- 让用户先倒完脑子里的东西,再开始解剖
**追问策略**
- 每次只追问 1-2 个问题,问题要直击要害
- 不接受模糊回答:"大概"、"可能"、"应该"、"用户会喜欢的" → 追问到底
- 发现逻辑漏洞,直接指出,不留情面
- 发现用户在自嗨,冷静泼冷水
- 当用户说"界面你看着办"或"随便",不惯着,用具体选项逼他们决策
- 布局必须问到具体:几栏、比例、各区域内容、控件规范
**方案引导策略**
- 用户知道但没说清楚 → 继续逼问,不给方案
- 用户真不知道 → 给 2-3 个选项 + 各自优劣,根据产品类型给针对性建议
- 给完继续逼他选,选完继续逼下一个细节
- 选项是工具,不是退路
**AI能力引导策略**
- 每当用户描述一个功能,主动思考:这个能不能用 AI 做?
- 主动询问:"这里要不要加个 AI 一键XX"
- 用户设计了繁琐的手动流程 → 直接建议用 AI 简化
- 对话后期,主动总结需要的 AI 能力类型
**技术需求引导策略**
- 用户没有编程基础,不直接问技术问题,通过业务场景推断技术需求
- 遵循简单优先原则,能不加复杂度就不加
- 用户想要的功能会大幅增加复杂度时,先劝退或建议分期
**确认策略**
- 定期复述已收集的信息,发现矛盾直接质问
- 信息够了就推进,不拖泥带水
- 用户说"差不多了"但信息明显不够,继续问
**搜索策略**
- 涉及可能变化的信息(技术、行业、竞品),先上网搜索再开口
[信息充足度判断]
当以下条件满足时,可以生成 Product Spec
**必须满足**
- ✅ 产品定位清晰(能用一句人话说明白这是什么)
- ✅ 目标用户明确(知道给谁用、为什么用)
- ✅ 核心功能明确至少3个功能点且能说清楚为什么需要
- ✅ 用户流程清晰(至少一条完整路径,从头到尾)
- ✅ AI能力需求明确知道哪些功能需要 AI用什么类型的 AI
**尽量满足**
- ✅ 整体布局有方向(知道大概是什么结构)
- ✅ 控件有基本规范(主要输入输出方式清楚)
如果「必须满足」条件未达成,继续追问,不要勉强生成一份垃圾文档。
如果「尽量满足」条件未达成,可以生成但标注 [待补充]。
[启动检查]
Skill 启动时,首先执行以下检查:
第一步:扫描项目目录,按优先级查找产品需求文档
优先级1精确匹配Product-Spec.md
优先级2扩大匹配*spec*.md、*prd*.md、*PRD*.md、*需求*.md、*product*.md
匹配规则:
- 找到 1 个文件 → 直接使用
- 找到多个候选文件 → 列出文件名问用户"你要改的是哪个?"
- 没找到 → 进入 0-1 模式
第二步:判断模式
- 找到产品需求文档 → 进入 **迭代模式**
- 没找到 → 进入 **0-1 模式**
第三步:执行对应流程
- 0-1 模式:执行 [工作流程0-1模式]
- 迭代模式:执行 [工作流程(迭代模式)]
[工作流程0-1模式]
[需求探索阶段]
目的:让用户把脑子里的东西倒出来
第一步:接住用户
**先上网搜索**:根据用户表达的产品想法上网搜索相关信息,了解最新情况
基于用户已经表达的内容,直接开始追问
不重复问"你想做什么",用户已经说过了
第二步:追问
**先上网搜索**:根据用户表达的内容上网搜索相关信息,确保追问基于最新知识
针对模糊、矛盾、自嗨的地方,直接追问
每次1-2个问题问到点子上
同时思考哪些功能可以用 AI 增强
第三步:阶段性确认
复述理解,确认没跑偏
有问题当场纠正
[需求完善阶段]
目的:填补漏洞,逼用户想清楚,确定 AI 能力需求和界面布局
第一步:漏洞识别
对照 [需求维度清单],找出缺失的关键信息
第二步:逼问
**先上网搜索**:针对缺失项上网搜索相关信息,确保给出的建议和方案是最新的
针对缺失项设计问题
不接受敷衍回答
布局问题要问到具体:几栏、比例、各区域内容、控件规范
第三步AI能力引导
**先上网搜索**:上网搜索最新的 AI 能力和最佳实践,确保建议不过时
主动询问用户:
- "这个功能要不要加 AI 一键优化?"
- "这里让用户手动填,还是让 AI 智能推荐?"
根据用户需求识别需要的 AI 能力类型(文本生成、图像生成、图像识别等)
第四步:技术复杂度评估
**先上网搜索**:上网搜索相关技术方案,确保建议是最新的
根据 [技术需求引导] 策略,通过业务问题判断技术复杂度
如果用户想要的功能会大幅增加复杂度,先劝退或建议分期
确保用户理解技术选择的影响
第五步:充足度判断
对照 [信息充足度判断]
「必须满足」都达成 → 提议生成
未达成 → 继续问,不惯着
[文档生成阶段]
目的:输出可用的 Product Spec 文件
第一步:整理
将对话内容按输出模板结构分类
第二步:填充
加载 templates/product-spec-template.md 获取模板格式
按模板格式填写
「尽量满足」未达成的地方标注 [待补充]
功能用动词开头
UI布局要描述清楚整体结构和各区域细节
流程写清楚步骤
第三步识别AI能力需求
根据功能需求识别所需的 AI 能力类型
在「AI 能力需求」部分列出
说明每种能力在本产品中的具体用途
第四步:输出文件
将 Product Spec 保存为 Product-Spec.md
[工作流程(迭代模式)]
**触发条件**:用户在开发过程中提出新功能、修改需求或迭代想法
**核心原则**:无缝衔接,不打断用户工作流。不需要开场白,直接接住用户的需求往下问。
[变更识别阶段]
目的:搞清楚用户要改什么
第一步:接住需求
**先上网搜索**:根据用户提出的变更内容上网搜索相关信息,确保追问基于最新知识
用户说"我觉得应该还要有一个AI一键推荐功能"
直接追问:"AI一键推荐什么推荐给谁这个按钮放哪个页面点了之后发生什么"
第二步:判断变更类型
根据 [迭代模式-追问深度判断] 确定这是重度、中度还是轻度变更
决定追问深度
[追问完善阶段]
目的:问到能直接改 Spec 为止
第一步:按深度追问
**先上网搜索**:每次追问前上网搜索相关信息,确保问题和建议基于最新知识
重度变更:问到能回答"这个变更会怎么影响现有产品"
中度变更:问到能回答"具体改成什么样"
轻度变更:确认理解正确即可
第二步:用户卡住时给方案
**先上网搜索**:给方案前上网搜索最新的解决方案和最佳实践
用户不知道怎么做 → 给 2-3 个选项 + 优劣
给完继续逼他选,选完继续逼下一个细节
第三步:冲突检测
加载现有 Product-Spec.md
检查新需求是否与现有内容冲突
发现冲突 → 直接指出冲突点 + 给解决方案 + 让用户选
**停止追问的标准**
- 能够直接动手改 Product Spec不需要再猜或假设
- 改完之后用户不会说"不是这个意思"
[文档更新阶段]
目的:更新 Product Spec 并记录变更
第一步:理解现有文档结构
加载现有 Spec 文件
识别其章节结构(可能和模板不同)
后续修改基于现有结构,不强行套用模板
第二步:直接修改源文件
在现有 Spec 上直接修改
保持文档整体结构不变
只改需要改的部分
第三步:更新 AI 能力需求
如果涉及新的 AI 功能:
- 在「AI 能力需求」章节添加新能力类型
- 说明新能力的用途
第四步:自动追加变更记录
在 Product-Spec-CHANGELOG.md 中追加本次变更
如果 CHANGELOG 文件不存在,创建一个
记录 Product Spec 迭代变更时,加载 templates/changelog-template.md 获取完整的变更记录格式和示例
根据对话内容自动生成变更描述
[迭代模式-追问深度判断]
**变更类型判断逻辑**(按顺序检查):
1. 涉及新 AI 能力?→ 重度
2. 涉及用户核心路径变更?→ 重度
3. 涉及布局结构(几栏、区域划分)?→ 重度
4. 新增主要功能模块?→ 重度
5. 涉及新功能但不改核心流程?→ 中度
6. 涉及现有功能的逻辑调整?→ 中度
7. 局部布局调整?→ 中度
8. 只是改文字、选项、样式?→ 轻度
**各类型追问标准**
| 变更类型 | 停止追问的条件 | 必须问清楚的内容 |
|---------|---------------|----------------|
| **重度** | 能回答"这个变更会怎么影响现有产品"时停止 | 为什么需要?影响哪些现有功能?用户流程怎么变?需要什么新的 AI 能力? |
| **中度** | 能回答"具体改成什么样"时停止 | 改哪里?改成什么?和现有的怎么配合? |
| **轻度** | 确认理解正确时停止 | 改什么?改成什么? |
[初始化]
执行 [启动检查]

View File

@@ -1,111 +0,0 @@
---
name: changelog-template
description: 变更记录模板。当 Product Spec 发生迭代变更时,按照此模板格式记录变更历史,输出为 Product-Spec-CHANGELOG.md 文件。
---
# 变更记录模板
本模板用于记录 Product Spec 的迭代变更历史。
---
## 文件命名
`Product-Spec-CHANGELOG.md`
---
## 模板格式
```markdown
# 变更记录
## [v1.2] - YYYY-MM-DD
### 新增
- <新增的功能或内容>
### 修改
- <修改的功能或内容>
### 删除
- <删除的功能或内容>
---
## [v1.1] - YYYY-MM-DD
### 新增
- <新增的功能或内容>
---
## [v1.0] - YYYY-MM-DD
- 初始版本
```
---
## 记录规则
- **版本号递增**:每次迭代 +0.1(如 v1.0 → v1.1 → v1.2
- **日期自动填充**:使用当天日期,格式 YYYY-MM-DD
- **变更描述**:根据对话内容自动生成,简明扼要
- **分类记录**:新增、修改、删除分开写,没有的分类不写
- **只记录实际改动**:没改的部分不记录
- **新增控件要写位置**:涉及 UI 变更时,说明控件放在哪里
---
## 完整示例
以下是「剧本分镜生成器」的变更记录示例,供参考:
```markdown
# 变更记录
## [v1.2] - 2025-12-08
### 新增
- 新增「AI 优化描述」按钮(角色设定区底部),点击后自动优化角色和场景的描述文字
- 新增分镜描述显示,每张分镜图下方展示 AI 生成的画面描述
### 修改
- 左侧输入区比例从 35% 改为 40%
- 「生成分镜」按钮样式改为更醒目的主色调
---
## [v1.1] - 2025-12-05
### 新增
- 新增「场景设定」功能区(角色设定区下方),用户可上传场景参考图建立视觉档案
- 新增「水墨」画风选项
- 新增图像理解能力,用于分析用户上传的参考图
### 修改
- 角色卡片布局优化,参考图预览尺寸从 80px 改为 120px
### 删除
- 移除「自动分页」功能(用户反馈更希望手动控制分页节奏)
---
## [v1.0] - 2025-12-01
- 初始版本
```
---
## 写作要点
1. **版本号**:从 v1.0 开始,每次迭代 +0.1,重大改版可以 +1.0
2. **日期格式**:统一用 YYYY-MM-DD方便排序和查找
3. **变更描述**
- 动词开头(新增、修改、删除、移除、调整)
- 说清楚改了什么、改成什么样
- 新增控件要写位置(如「角色设定区底部」)
- 数值变更要写前后对比(如「从 35% 改为 40%」)
- 如果有原因,简要说明(如「用户反馈不需要」)
4. **分类原则**
- 新增:之前没有的功能、控件、能力
- 修改:改变了现有内容的行为、样式、参数
- 删除:移除了之前有的功能
5. **颗粒度**:一条记录对应一个独立的变更点,不要把多个改动混在一起
6. **AI 能力变更**:如果新增或移除了 AI 能力,必须单独记录

View File

@@ -1,197 +0,0 @@
---
name: product-spec-template
description: Product Spec 输出模板。当需要生成产品需求文档时,按照此模板的结构和格式填充内容,输出为 Product-Spec.md 文件。
---
# Product Spec 输出模板
本模板用于生成结构完整的 Product Spec 文档。生成时按照此结构填充内容。
---
## 模板结构
**文件命名**Product-Spec.md
---
## 产品概述
<一段话说清楚>
- 这是什么产品
- 解决什么问题
- **目标用户是谁**(具体描述,不要只说「用户」)
- 核心价值是什么
## 应用场景
<列举 3-5 个具体场景在什么情况下怎么用解决什么问题>
## 功能需求
<核心功能辅助功能分类每条功能说明用户做什么 系统做什么 得到什么>
## UI 布局
<描述整体布局结构和各区域的详细设计需要包含>
- 整体是什么布局(几栏、比例、固定元素等)
- 每个区域放什么内容
- 控件的具体规范(位置、尺寸、样式等)
## 用户使用流程
<分步骤描述用户如何使用产品可以有多条路径如快速上手进阶使用>
## AI 能力需求
| 能力类型 | 用途说明 | 应用位置 |
|---------|---------|---------|
| <能力类型> | <做什么> | <在哪个环节触发> |
## 技术说明(可选)
<如果涉及以下内容需要说明>
- 数据存储:是否需要登录?数据存在哪里?
- 外部依赖:需要调用什么服务?有什么限制?
- 部署方式:纯前端?需要服务器?
## 补充说明
<如有需要用表格说明选项状态逻辑等>
---
## 完整示例
以下是一个「剧本分镜生成器」的 Product Spec 示例,供参考:
```markdown
## 产品概述
这是一个帮助漫画作者、短视频创作者、动画团队将剧本快速转化为分镜图的工具。
**目标用户**:有剧本但缺乏绘画能力、或者想快速出分镜草稿的创作者。他们可能是独立漫画作者、短视频博主、动画工作室的前期策划人员,共同的痛点是「脑子里有画面,但画不出来或画太慢」。
**核心价值**用户只需输入剧本文本、上传角色和场景参考图、选择画风AI 就会自动分析剧本结构,生成保持视觉一致性的分镜图,将原本需要数小时的分镜绘制工作缩短到几分钟。
## 应用场景
- **漫画创作**:独立漫画作者小王有一个 20 页的剧本需要先出分镜草稿再精修。他把剧本贴进来上传主角的参考图10 分钟就拿到了全部分镜草稿,可以直接在这个基础上精修。
- **短视频策划**:短视频博主小李要拍一个 3 分钟的剧情短片,需要给摄影师看分镜。她把脚本输入,选择「写实」风格,生成的分镜图直接可以当拍摄参考。
- **动画前期**:动画工作室要向客户提案,需要快速出一版分镜来展示剧本节奏。策划人员用这个工具 30 分钟出了 50 张分镜图,当天就能开提案会。
- **小说可视化**:网文作者想给自己的小说做宣传图,把关键场景描述输入,生成的分镜图可以直接用于社交媒体宣传。
- **教学演示**:小学语文老师想把一篇课文变成连环画给学生看,把课文内容输入,选择「动漫」风格,生成的图片可以直接做成 PPT。
## 功能需求
**核心功能**
- 剧本输入与分析:用户输入剧本文本 → 点击「生成分镜」→ AI 自动识别角色、场景和情节节拍,将剧本拆分为多页分镜
- 角色设定:用户添加角色卡片(名称 + 外观描述 + 参考图)→ 系统建立角色视觉档案,后续生成时保持外观一致
- 场景设定:用户添加场景卡片(名称 + 氛围描述 + 参考图)→ 系统建立场景视觉档案(可选,不设定则由 AI 根据剧本生成)
- 画风选择:用户从下拉框选择画风(漫画/动漫/写实/赛博朋克/水墨)→ 生成的分镜图采用对应视觉风格
- 分镜生成:用户点击「生成分镜」→ AI 生成当前页 9 张分镜图3x3 九宫格)→ 展示在右侧输出区
- 连续生成:用户点击「继续生成下一页」→ AI 基于前一页的画风和角色外观,生成下一页 9 张分镜图
**辅助功能**
- 批量下载:用户点击「下载全部」→ 系统将当前页 9 张图打包为 ZIP 下载
- 历史浏览:用户通过页面导航 → 切换查看已生成的历史页面
## UI 布局
### 整体布局
左右两栏布局,左侧输入区占 40%,右侧输出区占 60%。
### 左侧 - 输入区
- 顶部:项目名称输入框
- 剧本输入多行文本框placeholder「请输入剧本内容...」
- 角色设定区:
- 角色卡片列表,每张卡片包含:角色名、外观描述、参考图上传
- 「添加角色」按钮
- 场景设定区:
- 场景卡片列表,每张卡片包含:场景名、氛围描述、参考图上传
- 「添加场景」按钮
- 画风选择:下拉选择(漫画 / 动漫 / 写实 / 赛博朋克 / 水墨),默认「动漫」
- 底部:「生成分镜」主按钮,靠右对齐,醒目样式
### 右侧 - 输出区
- 分镜图展示区3x3 网格布局,展示 9 张独立分镜图
- 每张分镜图下方显示:分镜编号、简要描述
- 操作按钮:「下载全部」「继续生成下一页」
- 页面导航:显示当前页数,支持切换查看历史页面
## 用户使用流程
### 首次生成
1. 输入剧本内容
2. 添加角色:填写名称、外观描述,上传参考图
3. 添加场景:填写名称、氛围描述,上传参考图(可选)
4. 选择画风
5. 点击「生成分镜」
6. 在右侧查看生成的 9 张分镜图
7. 点击「下载全部」保存
### 连续生成
1. 完成首次生成后
2. 点击「继续生成下一页」
3. AI 基于前一页的画风和角色外观,生成下一页 9 张分镜图
4. 重复直到剧本完成
## AI 能力需求
| 能力类型 | 用途说明 | 应用位置 |
|---------|---------|---------|
| 文本理解与生成 | 分析剧本结构,识别角色、场景、情节节拍,规划分镜内容 | 点击「生成分镜」时 |
| 图像生成 | 根据分镜描述生成 3x3 九宫格分镜图 | 点击「生成分镜」「继续生成下一页」时 |
| 图像理解 | 分析用户上传的角色和场景参考图,提取视觉特征用于保持一致性 | 上传角色/场景参考图时 |
## 技术说明
- **数据存储**无需登录项目数据保存在浏览器本地存储LocalStorage关闭页面后仍可恢复
- **图像生成**:调用 AI 图像生成服务,每次生成 9 张图约需 30-60 秒
- **文件导出**:支持 PNG 格式批量下载,打包为 ZIP 文件
- **部署方式**:纯前端应用,无需服务器,可部署到任意静态托管平台
## 补充说明
| 选项 | 可选值 | 说明 |
|------|--------|------|
| 画风 | 漫画 / 动漫 / 写实 / 赛博朋克 / 水墨 | 决定分镜图的整体视觉风格 |
| 角色参考图 | 图片上传 | 用于建立角色视觉身份,确保一致性 |
| 场景参考图 | 图片上传(可选) | 用于建立场景氛围,不上传则由 AI 根据描述生成 |
```
---
## 写作要点
1. **产品概述**
- 一句话说清楚是什么
- **必须明确写出目标用户**:是谁、有什么特点、什么痛点
- 核心价值:用了这个产品能得到什么
2. **应用场景**
- 具体的人 + 具体的情况 + 具体的用法 + 解决什么问题
- 场景要有画面感,让人一看就懂
- 放在功能需求之前,帮助理解产品价值
3. **功能需求**
- 分「核心功能」和「辅助功能」
- 每条格式:用户做什么 → 系统做什么 → 得到什么
- 写清楚触发方式(点击什么按钮)
4. **UI 布局**
- 先写整体布局(几栏、比例)
- 再逐个区域描述内容
- 控件要具体:下拉框写出所有选项和默认值,按钮写明位置和样式
5. **用户流程**:分步骤,可以有多条路径
6. **AI 能力需求**
- 列出需要的 AI 能力类型
- 说明具体用途
- **写清楚在哪个环节触发**,方便开发理解调用时机
7. **技术说明**(可选):
- 数据存储方式
- 外部服务依赖
- 部署方式
- 只在有技术约束时写,没有就不写
8. **补充说明**:用表格,适合解释选项、状态、逻辑

View File

@@ -0,0 +1,345 @@
# Project Guidelines Skill (Example)
This is an example of a project-specific skill. Use this as a template for your own projects.
Based on a real production application: [Zenith](https://zenith.chat) - AI-powered customer discovery platform.
---
## When to Use
Reference this skill when working on the specific project it's designed for. Project skills contain:
- Architecture overview
- File structure
- Code patterns
- Testing requirements
- Deployment workflow
---
## Architecture Overview
**Tech Stack:**
- **Frontend**: Next.js 15 (App Router), TypeScript, React
- **Backend**: FastAPI (Python), Pydantic models
- **Database**: Supabase (PostgreSQL)
- **AI**: Claude API with tool calling and structured output
- **Deployment**: Google Cloud Run
- **Testing**: Playwright (E2E), pytest (backend), React Testing Library
**Services:**
```
┌─────────────────────────────────────────────────────────────┐
│ Frontend │
│ Next.js 15 + TypeScript + TailwindCSS │
│ Deployed: Vercel / Cloud Run │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Backend │
│ FastAPI + Python 3.11 + Pydantic │
│ Deployed: Cloud Run │
└─────────────────────────────────────────────────────────────┘
┌───────────────┼───────────────┐
▼ ▼ ▼
┌──────────┐ ┌──────────┐ ┌──────────┐
│ Supabase │ │ Claude │ │ Redis │
│ Database │ │ API │ │ Cache │
└──────────┘ └──────────┘ └──────────┘
```
---
## File Structure
```
project/
├── frontend/
│ └── src/
│ ├── app/ # Next.js app router pages
│ │ ├── api/ # API routes
│ │ ├── (auth)/ # Auth-protected routes
│ │ └── workspace/ # Main app workspace
│ ├── components/ # React components
│ │ ├── ui/ # Base UI components
│ │ ├── forms/ # Form components
│ │ └── layouts/ # Layout components
│ ├── hooks/ # Custom React hooks
│ ├── lib/ # Utilities
│ ├── types/ # TypeScript definitions
│ └── config/ # Configuration
├── backend/
│ ├── routers/ # FastAPI route handlers
│ ├── models.py # Pydantic models
│ ├── main.py # FastAPI app entry
│ ├── auth_system.py # Authentication
│ ├── database.py # Database operations
│ ├── services/ # Business logic
│ └── tests/ # pytest tests
├── deploy/ # Deployment configs
├── docs/ # Documentation
└── scripts/ # Utility scripts
```
---
## Code Patterns
### API Response Format (FastAPI)
```python
from pydantic import BaseModel
from typing import Generic, TypeVar, Optional
T = TypeVar('T')
class ApiResponse(BaseModel, Generic[T]):
success: bool
data: Optional[T] = None
error: Optional[str] = None
@classmethod
def ok(cls, data: T) -> "ApiResponse[T]":
return cls(success=True, data=data)
@classmethod
def fail(cls, error: str) -> "ApiResponse[T]":
return cls(success=False, error=error)
```
### Frontend API Calls (TypeScript)
```typescript
interface ApiResponse<T> {
success: boolean
data?: T
error?: string
}
async function fetchApi<T>(
endpoint: string,
options?: RequestInit
): Promise<ApiResponse<T>> {
try {
const response = await fetch(`/api${endpoint}`, {
...options,
headers: {
'Content-Type': 'application/json',
...options?.headers,
},
})
if (!response.ok) {
return { success: false, error: `HTTP ${response.status}` }
}
return await response.json()
} catch (error) {
return { success: false, error: String(error) }
}
}
```
### Claude AI Integration (Structured Output)
```python
from anthropic import Anthropic
from pydantic import BaseModel
class AnalysisResult(BaseModel):
summary: str
key_points: list[str]
confidence: float
async def analyze_with_claude(content: str) -> AnalysisResult:
client = Anthropic()
response = client.messages.create(
model="claude-sonnet-4-5-20250514",
max_tokens=1024,
messages=[{"role": "user", "content": content}],
tools=[{
"name": "provide_analysis",
"description": "Provide structured analysis",
"input_schema": AnalysisResult.model_json_schema()
}],
tool_choice={"type": "tool", "name": "provide_analysis"}
)
# Extract tool use result
tool_use = next(
block for block in response.content
if block.type == "tool_use"
)
return AnalysisResult(**tool_use.input)
```
### Custom Hooks (React)
```typescript
import { useState, useCallback } from 'react'
interface UseApiState<T> {
data: T | null
loading: boolean
error: string | null
}
export function useApi<T>(
fetchFn: () => Promise<ApiResponse<T>>
) {
const [state, setState] = useState<UseApiState<T>>({
data: null,
loading: false,
error: null,
})
const execute = useCallback(async () => {
setState(prev => ({ ...prev, loading: true, error: null }))
const result = await fetchFn()
if (result.success) {
setState({ data: result.data!, loading: false, error: null })
} else {
setState({ data: null, loading: false, error: result.error! })
}
}, [fetchFn])
return { ...state, execute }
}
```
---
## Testing Requirements
### Backend (pytest)
```bash
# Run all tests
poetry run pytest tests/
# Run with coverage
poetry run pytest tests/ --cov=. --cov-report=html
# Run specific test file
poetry run pytest tests/test_auth.py -v
```
**Test structure:**
```python
import pytest
from httpx import AsyncClient
from main import app
@pytest.fixture
async def client():
async with AsyncClient(app=app, base_url="http://test") as ac:
yield ac
@pytest.mark.asyncio
async def test_health_check(client: AsyncClient):
response = await client.get("/health")
assert response.status_code == 200
assert response.json()["status"] == "healthy"
```
### Frontend (React Testing Library)
```bash
# Run tests
npm run test
# Run with coverage
npm run test -- --coverage
# Run E2E tests
npm run test:e2e
```
**Test structure:**
```typescript
import { render, screen, fireEvent } from '@testing-library/react'
import { WorkspacePanel } from './WorkspacePanel'
describe('WorkspacePanel', () => {
it('renders workspace correctly', () => {
render(<WorkspacePanel />)
expect(screen.getByRole('main')).toBeInTheDocument()
})
it('handles session creation', async () => {
render(<WorkspacePanel />)
fireEvent.click(screen.getByText('New Session'))
expect(await screen.findByText('Session created')).toBeInTheDocument()
})
})
```
---
## Deployment Workflow
### Pre-Deployment Checklist
- [ ] All tests passing locally
- [ ] `npm run build` succeeds (frontend)
- [ ] `poetry run pytest` passes (backend)
- [ ] No hardcoded secrets
- [ ] Environment variables documented
- [ ] Database migrations ready
### Deployment Commands
```bash
# Build and deploy frontend
cd frontend && npm run build
gcloud run deploy frontend --source .
# Build and deploy backend
cd backend
gcloud run deploy backend --source .
```
### Environment Variables
```bash
# Frontend (.env.local)
NEXT_PUBLIC_API_URL=https://api.example.com
NEXT_PUBLIC_SUPABASE_URL=https://xxx.supabase.co
NEXT_PUBLIC_SUPABASE_ANON_KEY=eyJ...
# Backend (.env)
DATABASE_URL=postgresql://...
ANTHROPIC_API_KEY=sk-ant-...
SUPABASE_URL=https://xxx.supabase.co
SUPABASE_KEY=eyJ...
```
---
## Critical Rules
1. **No emojis** in code, comments, or documentation
2. **Immutability** - never mutate objects or arrays
3. **TDD** - write tests before implementation
4. **80% coverage** minimum
5. **Many small files** - 200-400 lines typical, 800 max
6. **No console.log** in production code
7. **Proper error handling** with try/catch
8. **Input validation** with Pydantic/Zod
---
## Related Skills
- `coding-standards.md` - General coding best practices
- `backend-patterns.md` - API and database patterns
- `frontend-patterns.md` - React and Next.js patterns
- `tdd-workflow/` - Test-driven development methodology

View File

@@ -0,0 +1,568 @@
---
name: security-review
description: Use this skill when adding authentication, handling user input, working with secrets, creating API endpoints, or implementing payment/sensitive features. Provides comprehensive security checklist and patterns.
---
# Security Review Skill
Security best practices for Python/FastAPI applications handling sensitive invoice data.
## When to Activate
- Implementing authentication or authorization
- Handling user input or file uploads
- Creating new API endpoints
- Working with secrets or credentials
- Processing sensitive invoice data
- Integrating third-party APIs
- Database operations with user data
## Security Checklist
### 1. Secrets Management
#### NEVER Do This
```python
# Hardcoded secrets - CRITICAL VULNERABILITY
api_key = "sk-proj-xxxxx"
db_password = "password123"
```
#### ALWAYS Do This
```python
import os
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
db_password: str
api_key: str
model_path: str = "runs/train/invoice_fields/weights/best.pt"
class Config:
env_file = ".env"
settings = Settings()
# Verify secrets exist
if not settings.db_password:
raise RuntimeError("DB_PASSWORD not configured")
```
#### Verification Steps
- [ ] No hardcoded API keys, tokens, or passwords
- [ ] All secrets in environment variables
- [ ] `.env` in .gitignore
- [ ] No secrets in git history
- [ ] `.env.example` with placeholder values
### 2. Input Validation
#### Always Validate User Input
```python
from pydantic import BaseModel, Field, field_validator
from fastapi import HTTPException
import re
class InvoiceRequest(BaseModel):
invoice_number: str = Field(..., min_length=1, max_length=50)
amount: float = Field(..., gt=0, le=1_000_000)
bankgiro: str | None = None
@field_validator("invoice_number")
@classmethod
def validate_invoice_number(cls, v: str) -> str:
# Whitelist validation - only allow safe characters
if not re.match(r"^[A-Za-z0-9\-_]+$", v):
raise ValueError("Invalid invoice number format")
return v
@field_validator("bankgiro")
@classmethod
def validate_bankgiro(cls, v: str | None) -> str | None:
if v is None:
return None
cleaned = re.sub(r"[^0-9]", "", v)
if not (7 <= len(cleaned) <= 8):
raise ValueError("Bankgiro must be 7-8 digits")
return cleaned
```
#### File Upload Validation
```python
from fastapi import UploadFile, HTTPException
from pathlib import Path
ALLOWED_EXTENSIONS = {".pdf"}
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
async def validate_pdf_upload(file: UploadFile) -> bytes:
"""Validate PDF upload with security checks."""
# Extension check
ext = Path(file.filename or "").suffix.lower()
if ext not in ALLOWED_EXTENSIONS:
raise HTTPException(400, f"Only PDF files allowed, got {ext}")
# Read content
content = await file.read()
# Size check
if len(content) > MAX_FILE_SIZE:
raise HTTPException(400, f"File too large (max {MAX_FILE_SIZE // 1024 // 1024}MB)")
# Magic bytes check (PDF signature)
if not content.startswith(b"%PDF"):
raise HTTPException(400, "Invalid PDF file format")
return content
```
#### Verification Steps
- [ ] All user inputs validated with Pydantic
- [ ] File uploads restricted (size, type, extension, magic bytes)
- [ ] No direct use of user input in queries
- [ ] Whitelist validation (not blacklist)
- [ ] Error messages don't leak sensitive info
### 3. SQL Injection Prevention
#### NEVER Concatenate SQL
```python
# DANGEROUS - SQL Injection vulnerability
query = f"SELECT * FROM documents WHERE id = '{user_input}'"
cur.execute(query)
```
#### ALWAYS Use Parameterized Queries
```python
import psycopg2
# Safe - parameterized query with %s placeholders
cur.execute(
"SELECT * FROM documents WHERE id = %s AND status = %s",
(document_id, status)
)
# Safe - named parameters
cur.execute(
"SELECT * FROM documents WHERE id = %(id)s",
{"id": document_id}
)
# Safe - psycopg2.sql for dynamic identifiers
from psycopg2 import sql
cur.execute(
sql.SQL("SELECT {} FROM {} WHERE id = %s").format(
sql.Identifier("invoice_number"),
sql.Identifier("documents")
),
(document_id,)
)
```
#### Verification Steps
- [ ] All database queries use parameterized queries (%s or %(name)s)
- [ ] No string concatenation or f-strings in SQL
- [ ] psycopg2.sql module used for dynamic identifiers
- [ ] No user input in table/column names
### 4. Path Traversal Prevention
#### NEVER Trust User Paths
```python
# DANGEROUS - Path traversal vulnerability
filename = request.query_params.get("file")
with open(f"/data/{filename}", "r") as f: # Attacker: ../../../etc/passwd
return f.read()
```
#### ALWAYS Validate Paths
```python
from pathlib import Path
ALLOWED_DIR = Path("/data/uploads").resolve()
def get_safe_path(filename: str) -> Path:
"""Get safe file path, preventing path traversal."""
# Remove any path components
safe_name = Path(filename).name
# Validate filename characters
if not re.match(r"^[A-Za-z0-9_\-\.]+$", safe_name):
raise HTTPException(400, "Invalid filename")
# Resolve and verify within allowed directory
full_path = (ALLOWED_DIR / safe_name).resolve()
if not full_path.is_relative_to(ALLOWED_DIR):
raise HTTPException(400, "Invalid file path")
return full_path
```
#### Verification Steps
- [ ] User-provided filenames sanitized
- [ ] Paths resolved and validated against allowed directory
- [ ] No direct concatenation of user input into paths
- [ ] Whitelist characters in filenames
### 5. Authentication & Authorization
#### API Key Validation
```python
from fastapi import Depends, HTTPException, Security
from fastapi.security import APIKeyHeader
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def verify_api_key(api_key: str = Security(api_key_header)) -> str:
if not api_key:
raise HTTPException(401, "API key required")
# Constant-time comparison to prevent timing attacks
import hmac
if not hmac.compare_digest(api_key, settings.api_key):
raise HTTPException(403, "Invalid API key")
return api_key
@router.post("/infer")
async def infer(
file: UploadFile,
api_key: str = Depends(verify_api_key)
):
...
```
#### Role-Based Access Control
```python
from enum import Enum
class UserRole(str, Enum):
USER = "user"
ADMIN = "admin"
def require_role(required_role: UserRole):
async def role_checker(current_user: User = Depends(get_current_user)):
if current_user.role != required_role:
raise HTTPException(403, "Insufficient permissions")
return current_user
return role_checker
@router.delete("/documents/{doc_id}")
async def delete_document(
doc_id: str,
user: User = Depends(require_role(UserRole.ADMIN))
):
...
```
#### Verification Steps
- [ ] API keys validated with constant-time comparison
- [ ] Authorization checks before sensitive operations
- [ ] Role-based access control implemented
- [ ] Session/token validation on protected routes
### 6. Rate Limiting
#### Rate Limiter Implementation
```python
from time import time
from collections import defaultdict
from fastapi import Request, HTTPException
class RateLimiter:
def __init__(self):
self.requests: dict[str, list[float]] = defaultdict(list)
def check_limit(
self,
identifier: str,
max_requests: int,
window_seconds: int
) -> bool:
now = time()
# Clean old requests
self.requests[identifier] = [
t for t in self.requests[identifier]
if now - t < window_seconds
]
# Check limit
if len(self.requests[identifier]) >= max_requests:
return False
self.requests[identifier].append(now)
return True
limiter = RateLimiter()
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
client_ip = request.client.host if request.client else "unknown"
# 100 requests per minute for general endpoints
if not limiter.check_limit(client_ip, max_requests=100, window_seconds=60):
raise HTTPException(429, "Rate limit exceeded. Try again later.")
return await call_next(request)
```
#### Stricter Limits for Expensive Operations
```python
# Inference endpoint: 10 requests per minute
async def check_inference_rate_limit(request: Request):
client_ip = request.client.host if request.client else "unknown"
if not limiter.check_limit(f"infer:{client_ip}", max_requests=10, window_seconds=60):
raise HTTPException(429, "Inference rate limit exceeded")
@router.post("/infer")
async def infer(
file: UploadFile,
_: None = Depends(check_inference_rate_limit)
):
...
```
#### Verification Steps
- [ ] Rate limiting on all API endpoints
- [ ] Stricter limits on expensive operations (inference, OCR)
- [ ] IP-based rate limiting
- [ ] Clear error messages for rate-limited requests
### 7. Sensitive Data Exposure
#### Logging
```python
import logging
logger = logging.getLogger(__name__)
# WRONG: Logging sensitive data
logger.info(f"Processing invoice: {invoice_data}") # May contain sensitive info
logger.error(f"DB error with password: {db_password}")
# CORRECT: Redact sensitive data
logger.info(f"Processing invoice: id={doc_id}")
logger.error(f"DB connection failed to {db_host}:{db_port}")
# CORRECT: Structured logging with safe fields only
logger.info(
"Invoice processed",
extra={
"document_id": doc_id,
"field_count": len(fields),
"processing_time_ms": elapsed_ms
}
)
```
#### Error Messages
```python
# WRONG: Exposing internal details
@app.exception_handler(Exception)
async def error_handler(request: Request, exc: Exception):
return JSONResponse(
status_code=500,
content={
"error": str(exc),
"traceback": traceback.format_exc() # NEVER expose!
}
)
# CORRECT: Generic error messages
@app.exception_handler(Exception)
async def error_handler(request: Request, exc: Exception):
logger.error(f"Unhandled error: {exc}", exc_info=True) # Log internally
return JSONResponse(
status_code=500,
content={"success": False, "error": "An error occurred"}
)
```
#### Verification Steps
- [ ] No passwords, tokens, or secrets in logs
- [ ] Error messages generic for users
- [ ] Detailed errors only in server logs
- [ ] No stack traces exposed to users
- [ ] Invoice data (amounts, account numbers) not logged
### 8. CORS Configuration
```python
from fastapi.middleware.cors import CORSMiddleware
# WRONG: Allow all origins
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # DANGEROUS in production
allow_credentials=True,
)
# CORRECT: Specific origins
ALLOWED_ORIGINS = [
"http://localhost:8000",
"https://your-domain.com",
]
app.add_middleware(
CORSMiddleware,
allow_origins=ALLOWED_ORIGINS,
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
)
```
#### Verification Steps
- [ ] CORS origins explicitly listed
- [ ] No wildcard origins in production
- [ ] Credentials only with specific origins
### 9. Temporary File Security
```python
import tempfile
from pathlib import Path
from contextlib import contextmanager
@contextmanager
def secure_temp_file(suffix: str = ".pdf"):
"""Create secure temporary file that is always cleaned up."""
tmp_path = None
try:
with tempfile.NamedTemporaryFile(
suffix=suffix,
delete=False,
dir="/tmp/invoice-master" # Dedicated temp directory
) as tmp:
tmp_path = Path(tmp.name)
yield tmp_path
finally:
if tmp_path and tmp_path.exists():
tmp_path.unlink()
# Usage
async def process_upload(file: UploadFile):
with secure_temp_file(".pdf") as tmp_path:
content = await validate_pdf_upload(file)
tmp_path.write_bytes(content)
result = pipeline.process(tmp_path)
# File automatically cleaned up
return result
```
#### Verification Steps
- [ ] Temporary files always cleaned up (use context managers)
- [ ] Temp directory has restricted permissions
- [ ] No leftover files after processing errors
### 10. Dependency Security
#### Regular Updates
```bash
# Check for vulnerabilities
pip-audit
# Update dependencies
pip install --upgrade -r requirements.txt
# Check for outdated packages
pip list --outdated
```
#### Lock Files
```bash
# Create requirements lock file
pip freeze > requirements.lock
# Install from lock file for reproducible builds
pip install -r requirements.lock
```
#### Verification Steps
- [ ] Dependencies up to date
- [ ] No known vulnerabilities (pip-audit clean)
- [ ] requirements.txt pinned versions
- [ ] Regular security updates scheduled
## Security Testing
### Automated Security Tests
```python
import pytest
from fastapi.testclient import TestClient
def test_requires_api_key(client: TestClient):
"""Test authentication required."""
response = client.post("/api/v1/infer")
assert response.status_code == 401
def test_invalid_api_key_rejected(client: TestClient):
"""Test invalid API key rejected."""
response = client.post(
"/api/v1/infer",
headers={"X-API-Key": "invalid-key"}
)
assert response.status_code == 403
def test_sql_injection_prevented(client: TestClient):
"""Test SQL injection attempt rejected."""
response = client.get(
"/api/v1/documents",
params={"id": "'; DROP TABLE documents; --"}
)
# Should return validation error, not execute SQL
assert response.status_code in (400, 422)
def test_path_traversal_prevented(client: TestClient):
"""Test path traversal attempt rejected."""
response = client.get("/api/v1/results/../../etc/passwd")
assert response.status_code == 400
def test_rate_limit_enforced(client: TestClient):
"""Test rate limiting works."""
responses = [
client.post("/api/v1/infer", files={"file": b"test"})
for _ in range(15)
]
rate_limited = [r for r in responses if r.status_code == 429]
assert len(rate_limited) > 0
def test_large_file_rejected(client: TestClient):
"""Test file size limit enforced."""
large_content = b"x" * (11 * 1024 * 1024) # 11MB
response = client.post(
"/api/v1/infer",
files={"file": ("test.pdf", large_content)}
)
assert response.status_code == 400
```
## Pre-Deployment Security Checklist
Before ANY production deployment:
- [ ] **Secrets**: No hardcoded secrets, all in env vars
- [ ] **Input Validation**: All user inputs validated with Pydantic
- [ ] **SQL Injection**: All queries use parameterized queries
- [ ] **Path Traversal**: File paths validated and sanitized
- [ ] **Authentication**: API key or token validation
- [ ] **Authorization**: Role checks in place
- [ ] **Rate Limiting**: Enabled on all endpoints
- [ ] **HTTPS**: Enforced in production
- [ ] **CORS**: Properly configured (no wildcards)
- [ ] **Error Handling**: No sensitive data in errors
- [ ] **Logging**: No sensitive data logged
- [ ] **File Uploads**: Validated (size, type, magic bytes)
- [ ] **Temp Files**: Always cleaned up
- [ ] **Dependencies**: Up to date, no vulnerabilities
## Resources
- [OWASP Top 10](https://owasp.org/www-project-top-ten/)
- [FastAPI Security](https://fastapi.tiangolo.com/tutorial/security/)
- [Bandit (Python Security Linter)](https://bandit.readthedocs.io/)
- [pip-audit](https://pypi.org/project/pip-audit/)
---
**Remember**: Security is not optional. One vulnerability can compromise sensitive invoice data. When in doubt, err on the side of caution.

View File

@@ -0,0 +1,63 @@
---
name: strategic-compact
description: Suggests manual context compaction at logical intervals to preserve context through task phases rather than arbitrary auto-compaction.
---
# Strategic Compact Skill
Suggests manual `/compact` at strategic points in your workflow rather than relying on arbitrary auto-compaction.
## Why Strategic Compaction?
Auto-compaction triggers at arbitrary points:
- Often mid-task, losing important context
- No awareness of logical task boundaries
- Can interrupt complex multi-step operations
Strategic compaction at logical boundaries:
- **After exploration, before execution** - Compact research context, keep implementation plan
- **After completing a milestone** - Fresh start for next phase
- **Before major context shifts** - Clear exploration context before different task
## How It Works
The `suggest-compact.sh` script runs on PreToolUse (Edit/Write) and:
1. **Tracks tool calls** - Counts tool invocations in session
2. **Threshold detection** - Suggests at configurable threshold (default: 50 calls)
3. **Periodic reminders** - Reminds every 25 calls after threshold
## Hook Setup
Add to your `~/.claude/settings.json`:
```json
{
"hooks": {
"PreToolUse": [{
"matcher": "tool == \"Edit\" || tool == \"Write\"",
"hooks": [{
"type": "command",
"command": "~/.claude/skills/strategic-compact/suggest-compact.sh"
}]
}]
}
}
```
## Configuration
Environment variables:
- `COMPACT_THRESHOLD` - Tool calls before first suggestion (default: 50)
## Best Practices
1. **Compact after planning** - Once plan is finalized, compact to start fresh
2. **Compact after debugging** - Clear error-resolution context before continuing
3. **Don't compact mid-implementation** - Preserve context for related changes
4. **Read the suggestion** - The hook tells you *when*, you decide *if*
## Related
- [The Longform Guide](https://x.com/affaanmustafa/status/2014040193557471352) - Token optimization section
- Memory persistence hooks - For state that survives compaction

View File

@@ -0,0 +1,52 @@
#!/bin/bash
# Strategic Compact Suggester
# Runs on PreToolUse or periodically to suggest manual compaction at logical intervals
#
# Why manual over auto-compact:
# - Auto-compact happens at arbitrary points, often mid-task
# - Strategic compacting preserves context through logical phases
# - Compact after exploration, before execution
# - Compact after completing a milestone, before starting next
#
# Hook config (in ~/.claude/settings.json):
# {
# "hooks": {
# "PreToolUse": [{
# "matcher": "Edit|Write",
# "hooks": [{
# "type": "command",
# "command": "~/.claude/skills/strategic-compact/suggest-compact.sh"
# }]
# }]
# }
# }
#
# Criteria for suggesting compact:
# - Session has been running for extended period
# - Large number of tool calls made
# - Transitioning from research/exploration to implementation
# - Plan has been finalized
# Track tool call count (increment in a temp file)
COUNTER_FILE="/tmp/claude-tool-count-$$"
THRESHOLD=${COMPACT_THRESHOLD:-50}
# Initialize or increment counter
if [ -f "$COUNTER_FILE" ]; then
count=$(cat "$COUNTER_FILE")
count=$((count + 1))
echo "$count" > "$COUNTER_FILE"
else
echo "1" > "$COUNTER_FILE"
count=1
fi
# Suggest compact after threshold tool calls
if [ "$count" -eq "$THRESHOLD" ]; then
echo "[StrategicCompact] $THRESHOLD tool calls reached - consider /compact if transitioning phases" >&2
fi
# Suggest at regular intervals after threshold
if [ "$count" -gt "$THRESHOLD" ] && [ $((count % 25)) -eq 0 ]; then
echo "[StrategicCompact] $count tool calls - good checkpoint for /compact if context is stale" >&2
fi

View File

@@ -0,0 +1,553 @@
---
name: tdd-workflow
description: Use this skill when writing new features, fixing bugs, or refactoring code. Enforces test-driven development with 80%+ coverage including unit, integration, and E2E tests.
---
# Test-Driven Development Workflow
TDD principles for Python/FastAPI development with pytest.
## When to Activate
- Writing new features or functionality
- Fixing bugs or issues
- Refactoring existing code
- Adding API endpoints
- Creating new field extractors or normalizers
## Core Principles
### 1. Tests BEFORE Code
ALWAYS write tests first, then implement code to make tests pass.
### 2. Coverage Requirements
- Minimum 80% coverage (unit + integration + E2E)
- All edge cases covered
- Error scenarios tested
- Boundary conditions verified
### 3. Test Types
#### Unit Tests
- Individual functions and utilities
- Normalizers and validators
- Parsers and extractors
- Pure functions
#### Integration Tests
- API endpoints
- Database operations
- OCR + YOLO pipeline
- Service interactions
#### E2E Tests
- Complete inference pipeline
- PDF → Fields workflow
- API health and inference endpoints
## TDD Workflow Steps
### Step 1: Write User Journeys
```
As a [role], I want to [action], so that [benefit]
Example:
As an invoice processor, I want to extract Bankgiro from payment_line,
so that I can cross-validate OCR results.
```
### Step 2: Generate Test Cases
For each user journey, create comprehensive test cases:
```python
import pytest
class TestPaymentLineParser:
"""Tests for payment_line parsing and field extraction."""
def test_parse_payment_line_extracts_bankgiro(self):
"""Should extract Bankgiro from valid payment line."""
# Test implementation
pass
def test_parse_payment_line_handles_missing_checksum(self):
"""Should handle payment lines without checksum."""
pass
def test_parse_payment_line_validates_checksum(self):
"""Should validate checksum when present."""
pass
def test_parse_payment_line_returns_none_for_invalid(self):
"""Should return None for invalid payment lines."""
pass
```
### Step 3: Run Tests (They Should Fail)
```bash
pytest tests/test_ocr/test_machine_code_parser.py -v
# Tests should fail - we haven't implemented yet
```
### Step 4: Implement Code
Write minimal code to make tests pass:
```python
def parse_payment_line(line: str) -> PaymentLineData | None:
"""Parse Swedish payment line and extract fields."""
# Implementation guided by tests
pass
```
### Step 5: Run Tests Again
```bash
pytest tests/test_ocr/test_machine_code_parser.py -v
# Tests should now pass
```
### Step 6: Refactor
Improve code quality while keeping tests green:
- Remove duplication
- Improve naming
- Optimize performance
- Enhance readability
### Step 7: Verify Coverage
```bash
pytest --cov=src --cov-report=term-missing
# Verify 80%+ coverage achieved
```
## Testing Patterns
### Unit Test Pattern (pytest)
```python
import pytest
from src.normalize.bankgiro_normalizer import normalize_bankgiro
class TestBankgiroNormalizer:
"""Tests for Bankgiro normalization."""
def test_normalize_removes_hyphens(self):
"""Should remove hyphens from Bankgiro."""
result = normalize_bankgiro("123-4567")
assert result == "1234567"
def test_normalize_removes_spaces(self):
"""Should remove spaces from Bankgiro."""
result = normalize_bankgiro("123 4567")
assert result == "1234567"
def test_normalize_validates_length(self):
"""Should validate Bankgiro is 7-8 digits."""
result = normalize_bankgiro("123456") # 6 digits
assert result is None
def test_normalize_validates_checksum(self):
"""Should validate Luhn checksum."""
result = normalize_bankgiro("1234568") # Invalid checksum
assert result is None
@pytest.mark.parametrize("input_value,expected", [
("123-4567", "1234567"),
("1234567", "1234567"),
("123 4567", "1234567"),
("BG 123-4567", "1234567"),
])
def test_normalize_various_formats(self, input_value, expected):
"""Should handle various input formats."""
result = normalize_bankgiro(input_value)
assert result == expected
```
### API Integration Test Pattern
```python
import pytest
from fastapi.testclient import TestClient
from src.web.app import app
@pytest.fixture
def client():
return TestClient(app)
class TestHealthEndpoint:
"""Tests for /api/v1/health endpoint."""
def test_health_returns_200(self, client):
"""Should return 200 OK."""
response = client.get("/api/v1/health")
assert response.status_code == 200
def test_health_returns_status(self, client):
"""Should return health status."""
response = client.get("/api/v1/health")
data = response.json()
assert data["status"] == "healthy"
assert "model_loaded" in data
class TestInferEndpoint:
"""Tests for /api/v1/infer endpoint."""
def test_infer_requires_file(self, client):
"""Should require file upload."""
response = client.post("/api/v1/infer")
assert response.status_code == 422
def test_infer_rejects_non_pdf(self, client):
"""Should reject non-PDF files."""
response = client.post(
"/api/v1/infer",
files={"file": ("test.txt", b"not a pdf", "text/plain")}
)
assert response.status_code == 400
def test_infer_returns_fields(self, client, sample_invoice_pdf):
"""Should return extracted fields."""
with open(sample_invoice_pdf, "rb") as f:
response = client.post(
"/api/v1/infer",
files={"file": ("invoice.pdf", f, "application/pdf")}
)
assert response.status_code == 200
data = response.json()
assert data["success"] is True
assert "fields" in data
```
### E2E Test Pattern
```python
import pytest
import httpx
from pathlib import Path
@pytest.fixture(scope="module")
def running_server():
"""Ensure server is running for E2E tests."""
# Server should be started before running E2E tests
base_url = "http://localhost:8000"
yield base_url
class TestInferencePipeline:
"""E2E tests for complete inference pipeline."""
def test_health_check(self, running_server):
"""Should pass health check."""
response = httpx.get(f"{running_server}/api/v1/health")
assert response.status_code == 200
data = response.json()
assert data["status"] == "healthy"
assert data["model_loaded"] is True
def test_pdf_inference_returns_fields(self, running_server):
"""Should extract fields from PDF."""
pdf_path = Path("tests/fixtures/sample_invoice.pdf")
with open(pdf_path, "rb") as f:
response = httpx.post(
f"{running_server}/api/v1/infer",
files={"file": ("invoice.pdf", f, "application/pdf")}
)
assert response.status_code == 200
data = response.json()
assert data["success"] is True
assert "fields" in data
assert len(data["fields"]) > 0
def test_cross_validation_included(self, running_server):
"""Should include cross-validation for invoices with payment_line."""
pdf_path = Path("tests/fixtures/invoice_with_payment_line.pdf")
with open(pdf_path, "rb") as f:
response = httpx.post(
f"{running_server}/api/v1/infer",
files={"file": ("invoice.pdf", f, "application/pdf")}
)
data = response.json()
if data["fields"].get("payment_line"):
assert "cross_validation" in data
```
## Test File Organization
```
tests/
├── conftest.py # Shared fixtures
├── fixtures/ # Test data files
│ ├── sample_invoice.pdf
│ └── invoice_with_payment_line.pdf
├── test_cli/
│ └── test_infer.py
├── test_pdf/
│ ├── test_extractor.py
│ └── test_renderer.py
├── test_ocr/
│ ├── test_paddle_ocr.py
│ └── test_machine_code_parser.py
├── test_inference/
│ ├── test_pipeline.py
│ ├── test_yolo_detector.py
│ └── test_field_extractor.py
├── test_normalize/
│ ├── test_bankgiro_normalizer.py
│ ├── test_date_normalizer.py
│ └── test_amount_normalizer.py
├── test_web/
│ ├── test_routes.py
│ └── test_services.py
└── e2e/
└── test_inference_e2e.py
```
## Mocking External Services
### Mock PaddleOCR
```python
import pytest
from unittest.mock import Mock, patch
@pytest.fixture
def mock_paddle_ocr():
"""Mock PaddleOCR for unit tests."""
with patch("src.ocr.paddle_ocr.PaddleOCR") as mock:
instance = Mock()
instance.ocr.return_value = [
[
[[[0, 0], [100, 0], [100, 20], [0, 20]], ("Invoice Number", 0.95)],
[[[0, 30], [100, 30], [100, 50], [0, 50]], ("INV-2024-001", 0.98)]
]
]
mock.return_value = instance
yield instance
```
### Mock YOLO Model
```python
@pytest.fixture
def mock_yolo_model():
"""Mock YOLO model for unit tests."""
with patch("src.inference.yolo_detector.YOLO") as mock:
instance = Mock()
# Mock detection results
instance.return_value = Mock(
boxes=Mock(
xyxy=[[10, 20, 100, 50]],
conf=[0.95],
cls=[0] # invoice_number class
)
)
mock.return_value = instance
yield instance
```
### Mock Database
```python
@pytest.fixture
def mock_db_connection():
"""Mock database connection for unit tests."""
with patch("src.data.db.get_db_connection") as mock:
conn = Mock()
cursor = Mock()
cursor.fetchall.return_value = [
("doc-123", "processed", {"invoice_number": "INV-001"})
]
cursor.fetchone.return_value = ("doc-123",)
conn.cursor.return_value.__enter__ = Mock(return_value=cursor)
conn.cursor.return_value.__exit__ = Mock(return_value=False)
mock.return_value.__enter__ = Mock(return_value=conn)
mock.return_value.__exit__ = Mock(return_value=False)
yield conn
```
## Test Coverage Verification
### Run Coverage Report
```bash
# Run with coverage
pytest --cov=src --cov-report=term-missing
# Generate HTML report
pytest --cov=src --cov-report=html
# Open htmlcov/index.html in browser
```
### Coverage Configuration (pyproject.toml)
```toml
[tool.coverage.run]
source = ["src"]
omit = ["*/__init__.py", "*/test_*.py"]
[tool.coverage.report]
fail_under = 80
show_missing = true
exclude_lines = [
"pragma: no cover",
"if TYPE_CHECKING:",
"raise NotImplementedError",
]
```
## Common Testing Mistakes to Avoid
### WRONG: Testing Implementation Details
```python
# Don't test internal state
def test_parser_internal_state():
parser = PaymentLineParser()
parser._parse("...")
assert parser._groups == [...] # Internal state
```
### CORRECT: Test Public Interface
```python
# Test what users see
def test_parser_extracts_bankgiro():
result = parse_payment_line("...")
assert result.bankgiro == "1234567"
```
### WRONG: No Test Isolation
```python
# Tests depend on each other
class TestDocuments:
def test_creates_document(self):
create_document(...) # Creates in DB
def test_updates_document(self):
update_document(...) # Depends on previous test
```
### CORRECT: Independent Tests
```python
# Each test sets up its own data
class TestDocuments:
def test_creates_document(self, mock_db):
result = create_document(...)
assert result.id is not None
def test_updates_document(self, mock_db):
# Create own test data
doc = create_document(...)
result = update_document(doc.id, ...)
assert result.status == "updated"
```
### WRONG: Testing Too Much
```python
# One test doing everything
def test_full_invoice_processing():
# Load PDF
# Extract images
# Run YOLO
# Run OCR
# Normalize fields
# Save to DB
# Return response
```
### CORRECT: Focused Tests
```python
def test_yolo_detects_invoice_number():
"""Test only YOLO detection."""
result = detector.detect(image)
assert any(d.label == "invoice_number" for d in result)
def test_ocr_extracts_text():
"""Test only OCR extraction."""
result = ocr.extract(image, bbox)
assert result == "INV-2024-001"
def test_normalizer_formats_date():
"""Test only date normalization."""
result = normalize_date("2024-01-15")
assert result == "2024-01-15"
```
## Fixtures (conftest.py)
```python
import pytest
from pathlib import Path
from fastapi.testclient import TestClient
@pytest.fixture
def sample_invoice_pdf(tmp_path: Path) -> Path:
"""Create sample invoice PDF for testing."""
pdf_path = tmp_path / "invoice.pdf"
# Copy from fixtures or create minimal PDF
src = Path("tests/fixtures/sample_invoice.pdf")
if src.exists():
pdf_path.write_bytes(src.read_bytes())
return pdf_path
@pytest.fixture
def client():
"""FastAPI test client."""
from src.web.app import app
return TestClient(app)
@pytest.fixture
def sample_payment_line() -> str:
"""Sample Swedish payment line for testing."""
return "1234567#0000000012345#230115#00012345678901234567#1"
```
## Continuous Testing
### Watch Mode During Development
```bash
# Using pytest-watch
ptw -- tests/test_ocr/
# Tests run automatically on file changes
```
### Pre-Commit Hook
```bash
# .pre-commit-config.yaml
repos:
- repo: local
hooks:
- id: pytest
name: pytest
entry: pytest --tb=short -q
language: system
pass_filenames: false
always_run: true
```
### CI/CD Integration (GitHub Actions)
```yaml
- name: Run Tests
run: |
pytest --cov=src --cov-report=xml
- name: Upload Coverage
uses: codecov/codecov-action@v3
with:
file: coverage.xml
```
## Best Practices
1. **Write Tests First** - Always TDD
2. **One Assert Per Test** - Focus on single behavior
3. **Descriptive Test Names** - `test_<what>_<condition>_<expected>`
4. **Arrange-Act-Assert** - Clear test structure
5. **Mock External Dependencies** - Isolate unit tests
6. **Test Edge Cases** - None, empty, invalid, boundary
7. **Test Error Paths** - Not just happy paths
8. **Keep Tests Fast** - Unit tests < 50ms each
9. **Clean Up After Tests** - Use fixtures with cleanup
10. **Review Coverage Reports** - Identify gaps
## Success Metrics
- 80%+ code coverage achieved
- All tests passing (green)
- No skipped or disabled tests
- Fast test execution (< 60s for unit tests)
- E2E tests cover critical inference flow
- Tests catch bugs before production
---
**Remember**: Tests are not optional. They are the safety net that enables confident refactoring, rapid development, and production reliability.

View File

@@ -0,0 +1,242 @@
# Verification Loop Skill
Comprehensive verification system for Python/FastAPI development.
## When to Use
Invoke this skill:
- After completing a feature or significant code change
- Before creating a PR
- When you want to ensure quality gates pass
- After refactoring
- Before deployment
## Verification Phases
### Phase 1: Type Check
```bash
# Run mypy type checker
mypy src/ --ignore-missing-imports 2>&1 | head -30
```
Report all type errors. Fix critical ones before continuing.
### Phase 2: Lint Check
```bash
# Run ruff linter
ruff check src/ 2>&1 | head -30
# Auto-fix if desired
ruff check src/ --fix
```
Check for:
- Unused imports
- Code style violations
- Common Python anti-patterns
### Phase 3: Test Suite
```bash
# Run tests with coverage
pytest --cov=src --cov-report=term-missing -q 2>&1 | tail -50
# Run specific test file
pytest tests/test_ocr/test_machine_code_parser.py -v
# Run with short traceback
pytest -x --tb=short
```
Report:
- Total tests: X
- Passed: X
- Failed: X
- Coverage: X%
- Target: 80% minimum
### Phase 4: Security Scan
```bash
# Check for hardcoded secrets
grep -rn "password\s*=" --include="*.py" src/ 2>/dev/null | grep -v "db_password:" | head -10
grep -rn "api_key\s*=" --include="*.py" src/ 2>/dev/null | head -10
grep -rn "sk-" --include="*.py" src/ 2>/dev/null | head -10
# Check for print statements (should use logging)
grep -rn "print(" --include="*.py" src/ 2>/dev/null | head -10
# Check for bare except
grep -rn "except:" --include="*.py" src/ 2>/dev/null | head -10
# Check for SQL injection risks (f-strings in execute)
grep -rn 'execute(f"' --include="*.py" src/ 2>/dev/null | head -10
grep -rn "execute(f'" --include="*.py" src/ 2>/dev/null | head -10
```
### Phase 5: Import Check
```bash
# Verify all imports work
python -c "from src.web.app import app; print('Web app OK')"
python -c "from src.inference.pipeline import InferencePipeline; print('Pipeline OK')"
python -c "from src.ocr.machine_code_parser import parse_payment_line; print('Parser OK')"
```
### Phase 6: Diff Review
```bash
# Show what changed
git diff --stat
git diff HEAD --name-only
# Show staged changes
git diff --staged --stat
```
Review each changed file for:
- Unintended changes
- Missing error handling
- Potential edge cases
- Missing type hints
- Mutable default arguments
### Phase 7: API Smoke Test (if server running)
```bash
# Health check
curl -s http://localhost:8000/api/v1/health | python -m json.tool
# Verify response format
curl -s http://localhost:8000/api/v1/health | grep -q "healthy" && echo "Health: OK" || echo "Health: FAIL"
```
## Output Format
After running all phases, produce a verification report:
```
VERIFICATION REPORT
==================
Types: [PASS/FAIL] (X errors)
Lint: [PASS/FAIL] (X warnings)
Tests: [PASS/FAIL] (X/Y passed, Z% coverage)
Security: [PASS/FAIL] (X issues)
Imports: [PASS/FAIL]
Diff: [X files changed]
Overall: [READY/NOT READY] for PR
Issues to Fix:
1. ...
2. ...
```
## Quick Commands
```bash
# Full verification (WSL)
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && mypy src/ --ignore-missing-imports && ruff check src/ && pytest -x --tb=short"
# Type check only
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && mypy src/ --ignore-missing-imports"
# Tests only
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && pytest --cov=src -q"
```
## Verification Checklist
### Before Commit
- [ ] mypy passes (no type errors)
- [ ] ruff check passes (no lint errors)
- [ ] All tests pass
- [ ] No print() statements in production code
- [ ] No hardcoded secrets
- [ ] No bare `except:` clauses
- [ ] No SQL injection risks (f-strings in queries)
- [ ] Coverage >= 80% for changed code
### Before PR
- [ ] All above checks pass
- [ ] git diff reviewed for unintended changes
- [ ] New code has tests
- [ ] Type hints on all public functions
- [ ] Docstrings on public APIs
- [ ] No TODO/FIXME for critical items
### Before Deployment
- [ ] All above checks pass
- [ ] E2E tests pass
- [ ] Health check returns healthy
- [ ] Model loaded successfully
- [ ] No server errors in logs
## Common Issues and Fixes
### Type Error: Missing return type
```python
# Before
def process(data):
return result
# After
def process(data: dict) -> InferenceResult:
return result
```
### Lint Error: Unused import
```python
# Remove unused imports or add to __all__
```
### Security: print() in production
```python
# Before
print(f"Processing {doc_id}")
# After
logger.info(f"Processing {doc_id}")
```
### Security: Bare except
```python
# Before
except:
pass
# After
except Exception as e:
logger.error(f"Error: {e}")
raise
```
### Security: SQL injection
```python
# Before (DANGEROUS)
cur.execute(f"SELECT * FROM docs WHERE id = '{user_input}'")
# After (SAFE)
cur.execute("SELECT * FROM docs WHERE id = %s", (user_input,))
```
## Continuous Mode
For long sessions, run verification after major changes:
```markdown
Checkpoints:
- After completing each function
- After finishing a module
- Before moving to next task
- Every 15-20 minutes of coding
Run: /verify
```
## Integration with Other Skills
| Skill | Purpose |
|-------|---------|
| code-review | Detailed code analysis |
| security-review | Deep security audit |
| tdd-workflow | Test coverage |
| build-fix | Fix errors incrementally |
This skill provides quick, comprehensive verification. Use specialized skills for deeper analysis.