Compare commits

...

10 Commits

Author SHA1 Message Date
Yaojia Wang
a564ac9d70 WIP 2026-02-01 18:51:54 +01:00
Yaojia Wang
4126196dea Add report 2026-02-01 01:49:50 +01:00
Yaojia Wang
a516de4320 WIP 2026-02-01 00:08:40 +01:00
Yaojia Wang
33ada0350d WIP 2026-01-30 00:44:21 +01:00
Yaojia Wang
d2489a97d4 Remove not used file 2026-01-27 23:58:39 +01:00
Yaojia Wang
d6550375b0 restructure project 2026-01-27 23:58:17 +01:00
Yaojia Wang
58bf75db68 WIP 2026-01-27 00:47:10 +01:00
Yaojia Wang
e83a0cae36 Add claude config 2026-01-25 16:17:39 +01:00
Yaojia Wang
d5101e3604 Add claude config 2026-01-25 16:17:23 +01:00
Yaojia Wang
e599424a92 Re-structure the project. 2026-01-25 15:21:11 +01:00
447 changed files with 73553 additions and 4491 deletions

View File

@@ -1,263 +1,143 @@
[角色]
你是废才,一位资深产品经理兼全栈开发教练。
你见过太多人带着"改变世界"的妄想来找你,最后连需求都说不清楚。
你也见过真正能成事的人——他们不一定聪明,但足够诚实,敢于面对自己想法的漏洞。
你负责引导用户完成产品开发的完整旅程:从脑子里的模糊想法,到可运行的产品。
[任务]
引导用户完成产品开发的完整流程:
1. **需求收集** → 调用 product-spec-builder生成 Product-Spec.md
2. **原型设计** → 调用 ui-prompt-generator生成 UI-Prompts.md可选
3. **项目开发** → 调用 dev-builder实现项目代码
4. **本地运行** → 启动项目,输出使用指南
[文件结构]
project/
├── Product-Spec.md # 产品需求文档
├── Product-Spec-CHANGELOG.md # 需求变更记录
├── UI-Prompts.md # 原型图提示词(可选)
├── [项目源代码]/ # 代码文件
└── .claude/
├── CLAUDE.md # 主控(本文件)
└── skills/
├── product-spec-builder/ # 需求收集
├── ui-prompt-generator/ # 原型图提示词
└── dev-builder/ # 项目开发
[总体规则]
- 严格按照 需求收集 → 原型设计(可选)→ 项目开发 → 本地运行 的流程引导
- **任何功能变更、UI 修改、需求调整,都必须先更新 Product Spec再实现代码**
- 无论用户如何打断或提出新问题,完成当前回答后始终引导用户进入下一步
- 始终使用**中文**进行交流
[运行环境要求]
**强制要求**:所有程序运行、命令执行必须在 WSL 环境中进行
- **WSL**:所有 bash 命令必须通过 `wsl` 前缀执行
- **Conda 环境**:必须使用 `invoice-py311` 环境
命令执行格式:
```bash
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && <你的命令>"
```
示例:
```bash
# 运行 Python 脚本
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && python main.py"
# 安装依赖
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && pip install -r requirements.txt"
# 运行测试
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && pytest"
```
**注意**
- 不要直接在 Windows PowerShell/CMD 中运行 Python 命令
- 每次执行命令都需要激活 conda 环境(因为是非交互式 shell
- 路径需要转换为 WSL 格式(如 `/mnt/c/Users/...`
[Skill 调用规则]
[product-spec-builder]
**自动调用**
- 用户表达想要开发产品、应用、工具时
- 用户描述产品想法、功能需求时
- 用户要修改 UI、改界面、调整布局时迭代模式
- 用户要增加功能、新增功能时(迭代模式)
- 用户要改需求、调整功能、修改逻辑时(迭代模式)
**手动调用**/prd
[ui-prompt-generator]
**手动调用**/ui
前置条件Product-Spec.md 必须存在
[dev-builder]
**手动调用**/dev
前置条件Product-Spec.md 必须存在
[项目状态检测与路由]
初始化时自动检测项目进度,路由到对应阶段:
检测逻辑:
- 无 Product-Spec.md → 全新项目 → 引导用户描述想法或输入 /prd
- 有 Product-Spec.md无代码 → Spec 已完成 → 输出交付指南
- 有 Product-Spec.md有代码 → 项目已创建 → 可执行 /check 或 /run
显示格式:
"📊 **项目进度检测**
- Product Spec[已完成/未完成]
- 原型图提示词:[已生成/未生成]
- 项目代码:[已创建/未创建]
**当前阶段**[阶段名称]
**下一步**[具体指令或操作]"
[工作流程]
[需求收集阶段]
触发:用户表达产品想法(自动)或输入 /prd手动
执行:调用 product-spec-builder skill
完成后:输出交付指南,引导下一步
[交付阶段]
触发Product Spec 生成完成后自动执行
输出:
"✅ **Product Spec 已生成!**
文件Product-Spec.md
---
## 📘 接下来
- 输入 /ui 生成原型图提示词(可选)
- 输入 /dev 开始开发项目
- 直接对话可以改 UI、加功能"
[原型图阶段]
触发:用户输入 /ui
执行:调用 ui-prompt-generator skill
完成后:
"✅ **原型图提示词已生成!**
文件UI-Prompts.md
把提示词发给 AI 绘图工具生成原型图,然后输入 /dev 开始开发。"
[项目开发阶段]
触发:用户输入 /dev
第一步:询问原型图
询问用户:"有原型图或设计稿吗?有的话发给我参考。"
用户发送图片 → 记录,开发时参考
用户说没有 → 继续
第二步:执行开发
调用 dev-builder skill
完成后:引导用户执行 /run
[代码检查阶段]
触发:用户输入 /check
执行:
第一步:读取 Product Spec 文档
加载 Product-Spec.md 文件
解析功能需求、UI 布局
第二步:扫描项目代码
遍历项目目录下的代码文件
识别已实现的功能、组件
第三步:功能完整度检查
- 功能需求Product Spec 功能需求 vs 代码实现
- UI 布局Product Spec 布局描述 vs 界面代码
第四步:输出检查报告
输出:
"📋 **项目完整度检查报告**
**对照文档**Product-Spec.md
---
✅ **已完成X项**
- [功能名称][实现位置]
⚠️ **部分完成X项**
- [功能名称][缺失内容]
❌ **缺失X项**
- [功能名称]:未实现
---
💡 **改进建议**
1. [具体建议]
2. [具体建议]
---
需要我帮你补充这些功能吗?或输入 /run 先跑起来看看。"
[本地运行阶段]
触发:用户输入 /run
执行:自动检测项目类型,安装依赖,启动项目
输出:
"🚀 **项目已启动!**
**访问地址**http://localhost:[端口号]
---
## 📖 使用指南
[根据 Product Spec 生成简要使用说明]
---
💡 **提示**
- /stop 停止服务
- /check 检查完整度
- /prd 修改需求"
[内容修订]
当用户提出修改意见时:
**流程**:先更新文档 → 再实现代码
1. 调用 product-spec-builder迭代模式
- 通过追问明确变更内容
- 更新 Product-Spec.md
- 更新 Product-Spec-CHANGELOG.md
2. 调用 dev-builder 实现代码变更
3. 建议用户执行 /check 验证
[指令集]
/prd - 需求收集,生成 Product Spec
/ui - 生成原型图提示词
/dev - 开发项目代码
/check - 对照 Spec 检查代码完整度
/run - 本地运行项目
/stop - 停止运行中的服务
/status - 显示项目进度
/help - 显示所有指令
[初始化]
以下ASCII艺术应该显示"FEICAI"字样。如果您看到乱码或显示异常请帮忙纠正使用ASCII艺术生成显示"FEICAI"
```
"███████╗███████╗██╗ ██████╗ █████╗ ██╗
██╔════╝██╔════╝██║██╔════╝██╔══██╗██║
█████╗ █████╗ ██║██║ ███████║██║
██╔══╝ ██╔══╝ ██║██║ ██╔══██║██║
██║ ███████╗██║╚██████╗██║ ██║██║
╚═╝ ╚══════╝╚═╝ ╚═════╝╚═╝ ╚═╝╚═╝"
```
"👋 我是废才,产品经理兼开发教练。
我不聊理想,只聊产品。你负责想,我负责问到你想清楚。
从需求文档到本地运行,全程我带着走。
过程中我会问很多问题,有些可能让你不舒服。不过放心,我只是想让你的产品能落地,仅此而已。
💡 输入 /help 查看所有指令
现在,说说你想做什么?"
执行 [项目状态检测与路由]
# Invoice Master POC v2
Swedish Invoice Field Extraction System - YOLOv11 + PaddleOCR 从瑞典 PDF 发票中提取结构化数据。
## Tech Stack
| Component | Technology |
|-----------|------------|
| Object Detection | YOLOv11 (Ultralytics) |
| OCR Engine | PaddleOCR v5 (PP-OCRv5) |
| PDF Processing | PyMuPDF (fitz) |
| Database | PostgreSQL + psycopg2 |
| Web Framework | FastAPI + Uvicorn |
| Deep Learning | PyTorch + CUDA 12.x |
## WSL Environment (REQUIRED)
**Prefix ALL commands with:**
```bash
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && <command>"
```
**NEVER run Python commands directly in Windows PowerShell/CMD.**
## Project-Specific Rules
- Python 3.11+ with type hints
- No print() in production - use logging
- Run tests: `pytest --cov=src`
## File Structure
```
src/
├── cli/ # autolabel, train, infer, serve
├── pdf/ # extractor, renderer, detector
├── ocr/ # PaddleOCR wrapper, machine_code_parser
├── inference/ # pipeline, yolo_detector, field_extractor
├── normalize/ # Per-field normalizers
├── matcher/ # Exact, substring, fuzzy strategies
├── processing/ # CPU/GPU pool architecture
├── web/ # FastAPI app, routes, services, schemas
├── utils/ # validators, text_cleaner, fuzzy_matcher
└── data/ # Database operations
tests/ # Mirror of src structure
runs/train/ # Training outputs
```
## Supported Fields
| ID | Field | Description |
|----|-------|-------------|
| 0 | invoice_number | Invoice number |
| 1 | invoice_date | Invoice date |
| 2 | invoice_due_date | Due date |
| 3 | ocr_number | OCR reference (Swedish payment) |
| 4 | bankgiro | Bankgiro account |
| 5 | plusgiro | Plusgiro account |
| 6 | amount | Amount |
| 7 | supplier_organisation_number | Supplier org number |
| 8 | payment_line | Payment line (machine-readable) |
| 9 | customer_number | Customer number |
## Key Patterns
### Inference Result
```python
@dataclass
class InferenceResult:
document_id: str
document_type: str # "invoice" or "letter"
fields: dict[str, str]
confidence: dict[str, float]
cross_validation: CrossValidationResult | None
processing_time_ms: float
```
### API Schemas
See `src/web/schemas.py` for request/response models.
## Environment Variables
```bash
# Required
DB_PASSWORD=
# Optional (with defaults)
DB_HOST=192.168.68.31
DB_PORT=5432
DB_NAME=docmaster
DB_USER=docmaster
MODEL_PATH=runs/train/invoice_fields/weights/best.pt
CONFIDENCE_THRESHOLD=0.5
SERVER_HOST=0.0.0.0
SERVER_PORT=8000
```
## CLI Commands
```bash
# Auto-labeling
python -m src.cli.autolabel --dual-pool --cpu-workers 3 --gpu-workers 1
# Training
python -m src.cli.train --model yolo11n.pt --epochs 100 --batch 16 --name invoice_fields
# Inference
python -m src.cli.infer --model runs/train/invoice_fields/weights/best.pt --input invoice.pdf --gpu
# Web Server
python run_server.py --port 8000
```
## API Endpoints
| Method | Endpoint | Description |
|--------|----------|-------------|
| GET | `/` | Web UI |
| GET | `/api/v1/health` | Health check |
| POST | `/api/v1/infer` | Process invoice |
| GET | `/api/v1/results/{filename}` | Get visualization |
## Current Status
- **Tests**: 688 passing
- **Coverage**: 37%
- **Model**: 93.5% mAP@0.5
- **Documents Labeled**: 9,738
## Quick Start
```bash
# Start server
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python run_server.py"
# Run tests
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && pytest"
# Access UI: http://localhost:8000
```

View File

@@ -0,0 +1,22 @@
# Build and Fix
Incrementally fix Python errors and test failures.
## Workflow
1. Run check: `mypy src/ --ignore-missing-imports` or `pytest -x --tb=short`
2. Parse errors, group by file, sort by severity (ImportError > TypeError > other)
3. For each error:
- Show context (5 lines)
- Explain and propose fix
- Apply fix
- Re-run test for that file
- Verify resolved
4. Stop if: fix introduces new errors, same error after 3 attempts, or user pauses
5. Show summary: fixed / remaining / new errors
## Rules
- Fix ONE error at a time
- Re-run tests after each fix
- Never batch multiple unrelated fixes

View File

@@ -0,0 +1,74 @@
# Checkpoint Command
Create or verify a checkpoint in your workflow.
## Usage
`/checkpoint [create|verify|list] [name]`
## Create Checkpoint
When creating a checkpoint:
1. Run `/verify quick` to ensure current state is clean
2. Create a git stash or commit with checkpoint name
3. Log checkpoint to `.claude/checkpoints.log`:
```bash
echo "$(date +%Y-%m-%d-%H:%M) | $CHECKPOINT_NAME | $(git rev-parse --short HEAD)" >> .claude/checkpoints.log
```
4. Report checkpoint created
## Verify Checkpoint
When verifying against a checkpoint:
1. Read checkpoint from log
2. Compare current state to checkpoint:
- Files added since checkpoint
- Files modified since checkpoint
- Test pass rate now vs then
- Coverage now vs then
3. Report:
```
CHECKPOINT COMPARISON: $NAME
============================
Files changed: X
Tests: +Y passed / -Z failed
Coverage: +X% / -Y%
Build: [PASS/FAIL]
```
## List Checkpoints
Show all checkpoints with:
- Name
- Timestamp
- Git SHA
- Status (current, behind, ahead)
## Workflow
Typical checkpoint flow:
```
[Start] --> /checkpoint create "feature-start"
|
[Implement] --> /checkpoint create "core-done"
|
[Test] --> /checkpoint verify "core-done"
|
[Refactor] --> /checkpoint create "refactor-done"
|
[PR] --> /checkpoint verify "feature-start"
```
## Arguments
$ARGUMENTS:
- `create <name>` - Create named checkpoint
- `verify <name>` - Verify against named checkpoint
- `list` - Show all checkpoints
- `clear` - Remove old checkpoints (keeps last 5)

View File

@@ -0,0 +1,46 @@
# Code Review
Security and quality review of uncommitted changes.
## Workflow
1. Get changed files: `git diff --name-only HEAD` and `git diff --staged --name-only`
2. Review each file for issues (see checklist below)
3. Run automated checks: `mypy src/`, `ruff check src/`, `pytest -x`
4. Generate report with severity, location, description, suggested fix
5. Block commit if CRITICAL or HIGH issues found
## Checklist
### CRITICAL (Block)
- Hardcoded credentials, API keys, tokens, passwords
- SQL injection (must use parameterized queries)
- Path traversal risks
- Missing input validation on API endpoints
- Missing authentication/authorization
### HIGH (Block)
- Functions > 50 lines, files > 800 lines
- Nesting depth > 4 levels
- Missing error handling or bare `except:`
- `print()` in production code (use logging)
- Mutable default arguments
### MEDIUM (Warn)
- Missing type hints on public functions
- Missing tests for new code
- Duplicate code, magic numbers
- Unused imports/variables
- TODO/FIXME comments
## Report Format
```
[SEVERITY] file:line - Issue description
Suggested fix: ...
```
## Never Approve Code With Security Vulnerabilities!

40
.claude/commands/e2e.md Normal file
View File

@@ -0,0 +1,40 @@
# E2E Testing
End-to-end testing for the Invoice Field Extraction API.
## When to Use
- Testing complete inference pipeline (PDF -> Fields)
- Verifying API endpoints work end-to-end
- Validating YOLO + OCR + field extraction integration
- Pre-deployment verification
## Workflow
1. Ensure server is running: `python run_server.py`
2. Run health check: `curl http://localhost:8000/api/v1/health`
3. Run E2E tests: `pytest tests/e2e/ -v`
4. Verify results and capture any failures
## Critical Scenarios (Must Pass)
1. Health check returns `{"status": "healthy", "model_loaded": true}`
2. PDF upload returns valid response with fields
3. Fields extracted with confidence scores
4. Visualization image generated
5. Cross-validation included for invoices with payment_line
## Checklist
- [ ] Server running on http://localhost:8000
- [ ] Health check passes
- [ ] PDF inference returns valid JSON
- [ ] At least one field extracted
- [ ] Visualization URL returns image
- [ ] Response time < 10 seconds
- [ ] No server errors in logs
## Test Location
E2E tests: `tests/e2e/`
Sample fixtures: `tests/fixtures/`

174
.claude/commands/eval.md Normal file
View File

@@ -0,0 +1,174 @@
# Eval Command
Evaluate model performance and field extraction accuracy.
## Usage
`/eval [model|accuracy|compare|report]`
## Model Evaluation
`/eval model`
Evaluate YOLO model performance on test dataset:
```bash
# Run model evaluation
python -m src.cli.train --model runs/train/invoice_fields/weights/best.pt --eval-only
# Or use ultralytics directly
yolo val model=runs/train/invoice_fields/weights/best.pt data=data.yaml
```
Output:
```
Model Evaluation: invoice_fields/best.pt
========================================
mAP@0.5: 93.5%
mAP@0.5-0.95: 83.0%
Per-class AP:
- invoice_number: 95.2%
- invoice_date: 94.8%
- invoice_due_date: 93.1%
- ocr_number: 91.5%
- bankgiro: 92.3%
- plusgiro: 90.8%
- amount: 88.7%
- supplier_org_num: 85.2%
- payment_line: 82.4%
- customer_number: 81.1%
```
## Accuracy Evaluation
`/eval accuracy`
Evaluate field extraction accuracy against ground truth:
```bash
# Run accuracy evaluation on labeled data
python -m src.cli.infer --model runs/train/invoice_fields/weights/best.pt \
--input ~/invoice-data/test/*.pdf \
--ground-truth ~/invoice-data/test/labels.csv \
--output eval_results.json
```
Output:
```
Field Extraction Accuracy
=========================
Documents tested: 500
Per-field accuracy:
- InvoiceNumber: 98.9% (494/500)
- InvoiceDate: 95.5% (478/500)
- InvoiceDueDate: 95.9% (480/500)
- OCR: 99.1% (496/500)
- Bankgiro: 99.0% (495/500)
- Plusgiro: 99.4% (497/500)
- Amount: 91.3% (457/500)
- supplier_org: 78.2% (391/500)
Overall: 94.8%
```
## Compare Models
`/eval compare`
Compare two model versions:
```bash
# Compare old vs new model
python -m src.cli.eval compare \
--model-a runs/train/invoice_v1/weights/best.pt \
--model-b runs/train/invoice_v2/weights/best.pt \
--test-data ~/invoice-data/test/
```
Output:
```
Model Comparison
================
Model A Model B Delta
mAP@0.5: 91.2% 93.5% +2.3%
Accuracy: 92.1% 94.8% +2.7%
Speed (ms): 1850 1520 -330
Per-field improvements:
- amount: +4.2%
- payment_line: +3.8%
- customer_num: +2.1%
Recommendation: Deploy Model B
```
## Generate Report
`/eval report`
Generate comprehensive evaluation report:
```bash
python -m src.cli.eval report --output eval_report.md
```
Output:
```markdown
# Evaluation Report
Generated: 2026-01-25
## Model Performance
- Model: runs/train/invoice_fields/weights/best.pt
- mAP@0.5: 93.5%
- Training samples: 9,738
## Field Extraction Accuracy
| Field | Accuracy | Errors |
|-------|----------|--------|
| InvoiceNumber | 98.9% | 6 |
| Amount | 91.3% | 43 |
...
## Error Analysis
### Common Errors
1. Amount: OCR misreads comma as period
2. supplier_org: Missing from some invoices
3. payment_line: Partially obscured by stamps
## Recommendations
1. Add more training data for low-accuracy fields
2. Implement OCR error correction for amounts
3. Consider confidence threshold tuning
```
## Quick Commands
```bash
# Evaluate model metrics
yolo val model=runs/train/invoice_fields/weights/best.pt
# Test inference on sample
python -m src.cli.infer --input sample.pdf --output result.json --gpu
# Check test coverage
pytest --cov=src --cov-report=html
```
## Evaluation Metrics
| Metric | Target | Current |
|--------|--------|---------|
| mAP@0.5 | >90% | 93.5% |
| Overall Accuracy | >90% | 94.8% |
| Test Coverage | >60% | 37% |
| Tests Passing | 100% | 100% |
## When to Evaluate
- After training a new model
- Before deploying to production
- After adding new training data
- When accuracy complaints arise
- Weekly performance monitoring

70
.claude/commands/learn.md Normal file
View File

@@ -0,0 +1,70 @@
# /learn - Extract Reusable Patterns
Analyze the current session and extract any patterns worth saving as skills.
## Trigger
Run `/learn` at any point during a session when you've solved a non-trivial problem.
## What to Extract
Look for:
1. **Error Resolution Patterns**
- What error occurred?
- What was the root cause?
- What fixed it?
- Is this reusable for similar errors?
2. **Debugging Techniques**
- Non-obvious debugging steps
- Tool combinations that worked
- Diagnostic patterns
3. **Workarounds**
- Library quirks
- API limitations
- Version-specific fixes
4. **Project-Specific Patterns**
- Codebase conventions discovered
- Architecture decisions made
- Integration patterns
## Output Format
Create a skill file at `~/.claude/skills/learned/[pattern-name].md`:
```markdown
# [Descriptive Pattern Name]
**Extracted:** [Date]
**Context:** [Brief description of when this applies]
## Problem
[What problem this solves - be specific]
## Solution
[The pattern/technique/workaround]
## Example
[Code example if applicable]
## When to Use
[Trigger conditions - what should activate this skill]
```
## Process
1. Review the session for extractable patterns
2. Identify the most valuable/reusable insight
3. Draft the skill file
4. Ask user to confirm before saving
5. Save to `~/.claude/skills/learned/`
## Notes
- Don't extract trivial fixes (typos, simple syntax errors)
- Don't extract one-time issues (specific API outages, etc.)
- Focus on patterns that will save time in future sessions
- Keep skills focused - one pattern per skill

View File

@@ -0,0 +1,172 @@
# Orchestrate Command
Sequential agent workflow for complex tasks.
## Usage
`/orchestrate [workflow-type] [task-description]`
## Workflow Types
### feature
Full feature implementation workflow:
```
planner -> tdd-guide -> code-reviewer -> security-reviewer
```
### bugfix
Bug investigation and fix workflow:
```
explorer -> tdd-guide -> code-reviewer
```
### refactor
Safe refactoring workflow:
```
architect -> code-reviewer -> tdd-guide
```
### security
Security-focused review:
```
security-reviewer -> code-reviewer -> architect
```
## Execution Pattern
For each agent in the workflow:
1. **Invoke agent** with context from previous agent
2. **Collect output** as structured handoff document
3. **Pass to next agent** in chain
4. **Aggregate results** into final report
## Handoff Document Format
Between agents, create handoff document:
```markdown
## HANDOFF: [previous-agent] -> [next-agent]
### Context
[Summary of what was done]
### Findings
[Key discoveries or decisions]
### Files Modified
[List of files touched]
### Open Questions
[Unresolved items for next agent]
### Recommendations
[Suggested next steps]
```
## Example: Feature Workflow
```
/orchestrate feature "Add user authentication"
```
Executes:
1. **Planner Agent**
- Analyzes requirements
- Creates implementation plan
- Identifies dependencies
- Output: `HANDOFF: planner -> tdd-guide`
2. **TDD Guide Agent**
- Reads planner handoff
- Writes tests first
- Implements to pass tests
- Output: `HANDOFF: tdd-guide -> code-reviewer`
3. **Code Reviewer Agent**
- Reviews implementation
- Checks for issues
- Suggests improvements
- Output: `HANDOFF: code-reviewer -> security-reviewer`
4. **Security Reviewer Agent**
- Security audit
- Vulnerability check
- Final approval
- Output: Final Report
## Final Report Format
```
ORCHESTRATION REPORT
====================
Workflow: feature
Task: Add user authentication
Agents: planner -> tdd-guide -> code-reviewer -> security-reviewer
SUMMARY
-------
[One paragraph summary]
AGENT OUTPUTS
-------------
Planner: [summary]
TDD Guide: [summary]
Code Reviewer: [summary]
Security Reviewer: [summary]
FILES CHANGED
-------------
[List all files modified]
TEST RESULTS
------------
[Test pass/fail summary]
SECURITY STATUS
---------------
[Security findings]
RECOMMENDATION
--------------
[SHIP / NEEDS WORK / BLOCKED]
```
## Parallel Execution
For independent checks, run agents in parallel:
```markdown
### Parallel Phase
Run simultaneously:
- code-reviewer (quality)
- security-reviewer (security)
- architect (design)
### Merge Results
Combine outputs into single report
```
## Arguments
$ARGUMENTS:
- `feature <description>` - Full feature workflow
- `bugfix <description>` - Bug fix workflow
- `refactor <description>` - Refactoring workflow
- `security <description>` - Security review workflow
- `custom <agents> <description>` - Custom agent sequence
## Custom Workflow Example
```
/orchestrate custom "architect,tdd-guide,code-reviewer" "Redesign caching layer"
```
## Tips
1. **Start with planner** for complex features
2. **Always include code-reviewer** before merge
3. **Use security-reviewer** for auth/payment/PII
4. **Keep handoffs concise** - focus on what next agent needs
5. **Run verification** between agents if needed

113
.claude/commands/plan.md Normal file
View File

@@ -0,0 +1,113 @@
---
description: Restate requirements, assess risks, and create step-by-step implementation plan. WAIT for user CONFIRM before touching any code.
---
# Plan Command
This command invokes the **planner** agent to create a comprehensive implementation plan before writing any code.
## What This Command Does
1. **Restate Requirements** - Clarify what needs to be built
2. **Identify Risks** - Surface potential issues and blockers
3. **Create Step Plan** - Break down implementation into phases
4. **Wait for Confirmation** - MUST receive user approval before proceeding
## When to Use
Use `/plan` when:
- Starting a new feature
- Making significant architectural changes
- Working on complex refactoring
- Multiple files/components will be affected
- Requirements are unclear or ambiguous
## How It Works
The planner agent will:
1. **Analyze the request** and restate requirements in clear terms
2. **Break down into phases** with specific, actionable steps
3. **Identify dependencies** between components
4. **Assess risks** and potential blockers
5. **Estimate complexity** (High/Medium/Low)
6. **Present the plan** and WAIT for your explicit confirmation
## Example Usage
```
User: /plan I need to add real-time notifications when markets resolve
Agent (planner):
# Implementation Plan: Real-Time Market Resolution Notifications
## Requirements Restatement
- Send notifications to users when markets they're watching resolve
- Support multiple notification channels (in-app, email, webhook)
- Ensure notifications are delivered reliably
- Include market outcome and user's position result
## Implementation Phases
### Phase 1: Database Schema
- Add notifications table with columns: id, user_id, market_id, type, status, created_at
- Add user_notification_preferences table for channel preferences
- Create indexes on user_id and market_id for performance
### Phase 2: Notification Service
- Create notification service in lib/notifications.ts
- Implement notification queue using BullMQ/Redis
- Add retry logic for failed deliveries
- Create notification templates
### Phase 3: Integration Points
- Hook into market resolution logic (when status changes to "resolved")
- Query all users with positions in market
- Enqueue notifications for each user
### Phase 4: Frontend Components
- Create NotificationBell component in header
- Add NotificationList modal
- Implement real-time updates via Supabase subscriptions
- Add notification preferences page
## Dependencies
- Redis (for queue)
- Email service (SendGrid/Resend)
- Supabase real-time subscriptions
## Risks
- HIGH: Email deliverability (SPF/DKIM required)
- MEDIUM: Performance with 1000+ users per market
- MEDIUM: Notification spam if markets resolve frequently
- LOW: Real-time subscription overhead
## Estimated Complexity: MEDIUM
- Backend: 4-6 hours
- Frontend: 3-4 hours
- Testing: 2-3 hours
- Total: 9-13 hours
**WAITING FOR CONFIRMATION**: Proceed with this plan? (yes/no/modify)
```
## Important Notes
**CRITICAL**: The planner agent will **NOT** write any code until you explicitly confirm the plan with "yes" or "proceed" or similar affirmative response.
If you want changes, respond with:
- "modify: [your changes]"
- "different approach: [alternative]"
- "skip phase 2 and do phase 3 first"
## Integration with Other Commands
After planning:
- Use `/tdd` to implement with test-driven development
- Use `/build-and-fix` if build errors occur
- Use `/code-review` to review completed implementation
## Related Agents
This command invokes the `planner` agent located at:
`~/.claude/agents/planner.md`

View File

@@ -0,0 +1,28 @@
# Refactor Clean
Safely identify and remove dead code with test verification:
1. Run dead code analysis tools:
- knip: Find unused exports and files
- depcheck: Find unused dependencies
- ts-prune: Find unused TypeScript exports
2. Generate comprehensive report in .reports/dead-code-analysis.md
3. Categorize findings by severity:
- SAFE: Test files, unused utilities
- CAUTION: API routes, components
- DANGER: Config files, main entry points
4. Propose safe deletions only
5. Before each deletion:
- Run full test suite
- Verify tests pass
- Apply change
- Re-run tests
- Rollback if tests fail
6. Show summary of cleaned items
Never delete code without running tests first!

View File

@@ -0,0 +1,80 @@
---
description: Configure your preferred package manager (npm/pnpm/yarn/bun)
disable-model-invocation: true
---
# Package Manager Setup
Configure your preferred package manager for this project or globally.
## Usage
```bash
# Detect current package manager
node scripts/setup-package-manager.js --detect
# Set global preference
node scripts/setup-package-manager.js --global pnpm
# Set project preference
node scripts/setup-package-manager.js --project bun
# List available package managers
node scripts/setup-package-manager.js --list
```
## Detection Priority
When determining which package manager to use, the following order is checked:
1. **Environment variable**: `CLAUDE_PACKAGE_MANAGER`
2. **Project config**: `.claude/package-manager.json`
3. **package.json**: `packageManager` field
4. **Lock file**: Presence of package-lock.json, yarn.lock, pnpm-lock.yaml, or bun.lockb
5. **Global config**: `~/.claude/package-manager.json`
6. **Fallback**: First available package manager (pnpm > bun > yarn > npm)
## Configuration Files
### Global Configuration
```json
// ~/.claude/package-manager.json
{
"packageManager": "pnpm"
}
```
### Project Configuration
```json
// .claude/package-manager.json
{
"packageManager": "bun"
}
```
### package.json
```json
{
"packageManager": "pnpm@8.6.0"
}
```
## Environment Variable
Set `CLAUDE_PACKAGE_MANAGER` to override all other detection methods:
```bash
# Windows (PowerShell)
$env:CLAUDE_PACKAGE_MANAGER = "pnpm"
# macOS/Linux
export CLAUDE_PACKAGE_MANAGER=pnpm
```
## Run the Detection
To see current package manager detection results, run:
```bash
node scripts/setup-package-manager.js --detect
```

326
.claude/commands/tdd.md Normal file
View File

@@ -0,0 +1,326 @@
---
description: Enforce test-driven development workflow. Scaffold interfaces, generate tests FIRST, then implement minimal code to pass. Ensure 80%+ coverage.
---
# TDD Command
This command invokes the **tdd-guide** agent to enforce test-driven development methodology.
## What This Command Does
1. **Scaffold Interfaces** - Define types/interfaces first
2. **Generate Tests First** - Write failing tests (RED)
3. **Implement Minimal Code** - Write just enough to pass (GREEN)
4. **Refactor** - Improve code while keeping tests green (REFACTOR)
5. **Verify Coverage** - Ensure 80%+ test coverage
## When to Use
Use `/tdd` when:
- Implementing new features
- Adding new functions/components
- Fixing bugs (write test that reproduces bug first)
- Refactoring existing code
- Building critical business logic
## How It Works
The tdd-guide agent will:
1. **Define interfaces** for inputs/outputs
2. **Write tests that will FAIL** (because code doesn't exist yet)
3. **Run tests** and verify they fail for the right reason
4. **Write minimal implementation** to make tests pass
5. **Run tests** and verify they pass
6. **Refactor** code while keeping tests green
7. **Check coverage** and add more tests if below 80%
## TDD Cycle
```
RED → GREEN → REFACTOR → REPEAT
RED: Write a failing test
GREEN: Write minimal code to pass
REFACTOR: Improve code, keep tests passing
REPEAT: Next feature/scenario
```
## Example Usage
```
User: /tdd I need a function to calculate market liquidity score
Agent (tdd-guide):
# TDD Session: Market Liquidity Score Calculator
## Step 1: Define Interface (SCAFFOLD)
```typescript
// lib/liquidity.ts
export interface MarketData {
totalVolume: number
bidAskSpread: number
activeTraders: number
lastTradeTime: Date
}
export function calculateLiquidityScore(market: MarketData): number {
// TODO: Implementation
throw new Error('Not implemented')
}
```
## Step 2: Write Failing Test (RED)
```typescript
// lib/liquidity.test.ts
import { calculateLiquidityScore } from './liquidity'
describe('calculateLiquidityScore', () => {
it('should return high score for liquid market', () => {
const market = {
totalVolume: 100000,
bidAskSpread: 0.01,
activeTraders: 500,
lastTradeTime: new Date()
}
const score = calculateLiquidityScore(market)
expect(score).toBeGreaterThan(80)
expect(score).toBeLessThanOrEqual(100)
})
it('should return low score for illiquid market', () => {
const market = {
totalVolume: 100,
bidAskSpread: 0.5,
activeTraders: 2,
lastTradeTime: new Date(Date.now() - 86400000) // 1 day ago
}
const score = calculateLiquidityScore(market)
expect(score).toBeLessThan(30)
expect(score).toBeGreaterThanOrEqual(0)
})
it('should handle edge case: zero volume', () => {
const market = {
totalVolume: 0,
bidAskSpread: 0,
activeTraders: 0,
lastTradeTime: new Date()
}
const score = calculateLiquidityScore(market)
expect(score).toBe(0)
})
})
```
## Step 3: Run Tests - Verify FAIL
```bash
npm test lib/liquidity.test.ts
FAIL lib/liquidity.test.ts
✕ should return high score for liquid market (2 ms)
Error: Not implemented
1 test failed, 0 passed
```
✅ Tests fail as expected. Ready to implement.
## Step 4: Implement Minimal Code (GREEN)
```typescript
// lib/liquidity.ts
export function calculateLiquidityScore(market: MarketData): number {
// Handle zero volume edge case
if (market.totalVolume === 0) {
return 0
}
// Calculate component scores (0-100 scale)
const volumeScore = Math.min(market.totalVolume / 1000, 100)
const spreadScore = Math.max(100 - (market.bidAskSpread * 1000), 0)
const traderScore = Math.min(market.activeTraders / 10, 100)
// Recent activity bonus
const hoursSinceLastTrade = (Date.now() - market.lastTradeTime.getTime()) / (1000 * 60 * 60)
const recencyScore = Math.max(100 - (hoursSinceLastTrade * 10), 0)
// Weighted average
const score = (
volumeScore * 0.4 +
spreadScore * 0.3 +
traderScore * 0.2 +
recencyScore * 0.1
)
return Math.min(Math.max(score, 0), 100) // Clamp to 0-100
}
```
## Step 5: Run Tests - Verify PASS
```bash
npm test lib/liquidity.test.ts
PASS lib/liquidity.test.ts
✓ should return high score for liquid market (3 ms)
✓ should return low score for illiquid market (2 ms)
✓ should handle edge case: zero volume (1 ms)
3 tests passed
```
✅ All tests passing!
## Step 6: Refactor (IMPROVE)
```typescript
// lib/liquidity.ts - Refactored with constants and better readability
const WEIGHTS = {
VOLUME: 0.4,
SPREAD: 0.3,
TRADERS: 0.2,
RECENCY: 0.1,
} as const
const SCALE_FACTORS = {
VOLUME: 1000,
SPREAD: 1000,
TRADERS: 10,
RECENCY_PENALTY: 10,
} as const
function clamp(value: number, min: number, max: number): number {
return Math.min(Math.max(value, min), max)
}
export function calculateLiquidityScore(market: MarketData): number {
if (market.totalVolume === 0) return 0
const volumeScore = Math.min(market.totalVolume / SCALE_FACTORS.VOLUME, 100)
const spreadScore = clamp(100 - (market.bidAskSpread * SCALE_FACTORS.SPREAD), 0, 100)
const traderScore = Math.min(market.activeTraders / SCALE_FACTORS.TRADERS, 100)
const hoursSinceLastTrade = (Date.now() - market.lastTradeTime.getTime()) / (1000 * 60 * 60)
const recencyScore = clamp(100 - (hoursSinceLastTrade * SCALE_FACTORS.RECENCY_PENALTY), 0, 100)
const weightedScore =
volumeScore * WEIGHTS.VOLUME +
spreadScore * WEIGHTS.SPREAD +
traderScore * WEIGHTS.TRADERS +
recencyScore * WEIGHTS.RECENCY
return clamp(weightedScore, 0, 100)
}
```
## Step 7: Verify Tests Still Pass
```bash
npm test lib/liquidity.test.ts
PASS lib/liquidity.test.ts
✓ should return high score for liquid market (3 ms)
✓ should return low score for illiquid market (2 ms)
✓ should handle edge case: zero volume (1 ms)
3 tests passed
```
✅ Refactoring complete, tests still passing!
## Step 8: Check Coverage
```bash
npm test -- --coverage lib/liquidity.test.ts
File | % Stmts | % Branch | % Funcs | % Lines
---------------|---------|----------|---------|--------
liquidity.ts | 100 | 100 | 100 | 100
Coverage: 100% ✅ (Target: 80%)
```
✅ TDD session complete!
```
## TDD Best Practices
**DO:**
- ✅ Write the test FIRST, before any implementation
- ✅ Run tests and verify they FAIL before implementing
- ✅ Write minimal code to make tests pass
- ✅ Refactor only after tests are green
- ✅ Add edge cases and error scenarios
- ✅ Aim for 80%+ coverage (100% for critical code)
**DON'T:**
- ❌ Write implementation before tests
- ❌ Skip running tests after each change
- ❌ Write too much code at once
- ❌ Ignore failing tests
- ❌ Test implementation details (test behavior)
- ❌ Mock everything (prefer integration tests)
## Test Types to Include
**Unit Tests** (Function-level):
- Happy path scenarios
- Edge cases (empty, null, max values)
- Error conditions
- Boundary values
**Integration Tests** (Component-level):
- API endpoints
- Database operations
- External service calls
- React components with hooks
**E2E Tests** (use `/e2e` command):
- Critical user flows
- Multi-step processes
- Full stack integration
## Coverage Requirements
- **80% minimum** for all code
- **100% required** for:
- Financial calculations
- Authentication logic
- Security-critical code
- Core business logic
## Important Notes
**MANDATORY**: Tests must be written BEFORE implementation. The TDD cycle is:
1. **RED** - Write failing test
2. **GREEN** - Implement to pass
3. **REFACTOR** - Improve code
Never skip the RED phase. Never write code before tests.
## Integration with Other Commands
- Use `/plan` first to understand what to build
- Use `/tdd` to implement with tests
- Use `/build-and-fix` if build errors occur
- Use `/code-review` to review implementation
- Use `/test-coverage` to verify coverage
## Related Agents
This command invokes the `tdd-guide` agent located at:
`~/.claude/agents/tdd-guide.md`
And can reference the `tdd-workflow` skill at:
`~/.claude/skills/tdd-workflow/`

View File

@@ -0,0 +1,27 @@
# Test Coverage
Analyze test coverage and generate missing tests:
1. Run tests with coverage: npm test --coverage or pnpm test --coverage
2. Analyze coverage report (coverage/coverage-summary.json)
3. Identify files below 80% coverage threshold
4. For each under-covered file:
- Analyze untested code paths
- Generate unit tests for functions
- Generate integration tests for APIs
- Generate E2E tests for critical flows
5. Verify new tests pass
6. Show before/after coverage metrics
7. Ensure project reaches 80%+ overall coverage
Focus on:
- Happy path scenarios
- Error handling
- Edge cases (null, undefined, empty)
- Boundary conditions

View File

@@ -0,0 +1,17 @@
# Update Codemaps
Analyze the codebase structure and update architecture documentation:
1. Scan all source files for imports, exports, and dependencies
2. Generate token-lean codemaps in the following format:
- codemaps/architecture.md - Overall architecture
- codemaps/backend.md - Backend structure
- codemaps/frontend.md - Frontend structure
- codemaps/data.md - Data models and schemas
3. Calculate diff percentage from previous version
4. If changes > 30%, request user approval before updating
5. Add freshness timestamp to each codemap
6. Save reports to .reports/codemap-diff.txt
Use TypeScript/Node.js for analysis. Focus on high-level structure, not implementation details.

View File

@@ -0,0 +1,31 @@
# Update Documentation
Sync documentation from source-of-truth:
1. Read package.json scripts section
- Generate scripts reference table
- Include descriptions from comments
2. Read .env.example
- Extract all environment variables
- Document purpose and format
3. Generate docs/CONTRIB.md with:
- Development workflow
- Available scripts
- Environment setup
- Testing procedures
4. Generate docs/RUNBOOK.md with:
- Deployment procedures
- Monitoring and alerts
- Common issues and fixes
- Rollback procedures
5. Identify obsolete documentation:
- Find docs not modified in 90+ days
- List for manual review
6. Show diff summary
Single source of truth: package.json and .env.example

View File

@@ -0,0 +1,59 @@
# Verification Command
Run comprehensive verification on current codebase state.
## Instructions
Execute verification in this exact order:
1. **Build Check**
- Run the build command for this project
- If it fails, report errors and STOP
2. **Type Check**
- Run TypeScript/type checker
- Report all errors with file:line
3. **Lint Check**
- Run linter
- Report warnings and errors
4. **Test Suite**
- Run all tests
- Report pass/fail count
- Report coverage percentage
5. **Console.log Audit**
- Search for console.log in source files
- Report locations
6. **Git Status**
- Show uncommitted changes
- Show files modified since last commit
## Output
Produce a concise verification report:
```
VERIFICATION: [PASS/FAIL]
Build: [OK/FAIL]
Types: [OK/X errors]
Lint: [OK/X issues]
Tests: [X/Y passed, Z% coverage]
Secrets: [OK/X found]
Logs: [OK/X console.logs]
Ready for PR: [YES/NO]
```
If any critical issues, list them with fix suggestions.
## Arguments
$ARGUMENTS can be:
- `quick` - Only build + types
- `full` - All checks (default)
- `pre-commit` - Checks relevant for commits
- `pre-pr` - Full checks plus security scan

157
.claude/hooks/hooks.json Normal file
View File

@@ -0,0 +1,157 @@
{
"$schema": "https://json.schemastore.org/claude-code-settings.json",
"hooks": {
"PreToolUse": [
{
"matcher": "tool == \"Bash\" && tool_input.command matches \"(npm run dev|pnpm( run)? dev|yarn dev|bun run dev)\"",
"hooks": [
{
"type": "command",
"command": "node -e \"console.error('[Hook] BLOCKED: Dev server must run in tmux for log access');console.error('[Hook] Use: tmux new-session -d -s dev \\\"npm run dev\\\"');console.error('[Hook] Then: tmux attach -t dev');process.exit(1)\""
}
],
"description": "Block dev servers outside tmux - ensures you can access logs"
},
{
"matcher": "tool == \"Bash\" && tool_input.command matches \"(npm (install|test)|pnpm (install|test)|yarn (install|test)?|bun (install|test)|cargo build|make|docker|pytest|vitest|playwright)\"",
"hooks": [
{
"type": "command",
"command": "node -e \"if(!process.env.TMUX){console.error('[Hook] Consider running in tmux for session persistence');console.error('[Hook] tmux new -s dev | tmux attach -t dev')}\""
}
],
"description": "Reminder to use tmux for long-running commands"
},
{
"matcher": "tool == \"Bash\" && tool_input.command matches \"git push\"",
"hooks": [
{
"type": "command",
"command": "node -e \"console.error('[Hook] Review changes before push...');console.error('[Hook] Continuing with push (remove this hook to add interactive review)')\""
}
],
"description": "Reminder before git push to review changes"
},
{
"matcher": "tool == \"Write\" && tool_input.file_path matches \"\\\\.(md|txt)$\" && !(tool_input.file_path matches \"README\\\\.md|CLAUDE\\\\.md|AGENTS\\\\.md|CONTRIBUTING\\\\.md\")",
"hooks": [
{
"type": "command",
"command": "node -e \"const fs=require('fs');let d='';process.stdin.on('data',c=>d+=c);process.stdin.on('end',()=>{const i=JSON.parse(d);const p=i.tool_input?.file_path||'';if(/\\.(md|txt)$/.test(p)&&!/(README|CLAUDE|AGENTS|CONTRIBUTING)\\.md$/.test(p)){console.error('[Hook] BLOCKED: Unnecessary documentation file creation');console.error('[Hook] File: '+p);console.error('[Hook] Use README.md for documentation instead');process.exit(1)}console.log(d)})\""
}
],
"description": "Block creation of random .md files - keeps docs consolidated"
},
{
"matcher": "tool == \"Edit\" || tool == \"Write\"",
"hooks": [
{
"type": "command",
"command": "node \"${CLAUDE_PLUGIN_ROOT}/scripts/hooks/suggest-compact.js\""
}
],
"description": "Suggest manual compaction at logical intervals"
}
],
"PreCompact": [
{
"matcher": "*",
"hooks": [
{
"type": "command",
"command": "node \"${CLAUDE_PLUGIN_ROOT}/scripts/hooks/pre-compact.js\""
}
],
"description": "Save state before context compaction"
}
],
"SessionStart": [
{
"matcher": "*",
"hooks": [
{
"type": "command",
"command": "node \"${CLAUDE_PLUGIN_ROOT}/scripts/hooks/session-start.js\""
}
],
"description": "Load previous context and detect package manager on new session"
}
],
"PostToolUse": [
{
"matcher": "tool == \"Bash\"",
"hooks": [
{
"type": "command",
"command": "node -e \"let d='';process.stdin.on('data',c=>d+=c);process.stdin.on('end',()=>{const i=JSON.parse(d);const cmd=i.tool_input?.command||'';if(/gh pr create/.test(cmd)){const out=i.tool_output?.output||'';const m=out.match(/https:\\/\\/github.com\\/[^/]+\\/[^/]+\\/pull\\/\\d+/);if(m){console.error('[Hook] PR created: '+m[0]);const repo=m[0].replace(/https:\\/\\/github.com\\/([^/]+\\/[^/]+)\\/pull\\/\\d+/,'$1');const pr=m[0].replace(/.*\\/pull\\/(\\d+)/,'$1');console.error('[Hook] To review: gh pr review '+pr+' --repo '+repo)}}console.log(d)})\""
}
],
"description": "Log PR URL and provide review command after PR creation"
},
{
"matcher": "tool == \"Edit\" && tool_input.file_path matches \"\\\\.(ts|tsx|js|jsx)$\"",
"hooks": [
{
"type": "command",
"command": "node -e \"const{execSync}=require('child_process');const fs=require('fs');let d='';process.stdin.on('data',c=>d+=c);process.stdin.on('end',()=>{const i=JSON.parse(d);const p=i.tool_input?.file_path;if(p&&fs.existsSync(p)){try{execSync('npx prettier --write \"'+p+'\"',{stdio:['pipe','pipe','pipe']})}catch(e){}}console.log(d)})\""
}
],
"description": "Auto-format JS/TS files with Prettier after edits"
},
{
"matcher": "tool == \"Edit\" && tool_input.file_path matches \"\\\\.(ts|tsx)$\"",
"hooks": [
{
"type": "command",
"command": "node -e \"const{execSync}=require('child_process');const fs=require('fs');const path=require('path');let d='';process.stdin.on('data',c=>d+=c);process.stdin.on('end',()=>{const i=JSON.parse(d);const p=i.tool_input?.file_path;if(p&&fs.existsSync(p)){let dir=path.dirname(p);while(dir!==path.dirname(dir)&&!fs.existsSync(path.join(dir,'tsconfig.json'))){dir=path.dirname(dir)}if(fs.existsSync(path.join(dir,'tsconfig.json'))){try{const r=execSync('npx tsc --noEmit --pretty false 2>&1',{cwd:dir,encoding:'utf8',stdio:['pipe','pipe','pipe']});const lines=r.split('\\n').filter(l=>l.includes(p)).slice(0,10);if(lines.length)console.error(lines.join('\\n'))}catch(e){const lines=(e.stdout||'').split('\\n').filter(l=>l.includes(p)).slice(0,10);if(lines.length)console.error(lines.join('\\n'))}}}console.log(d)})\""
}
],
"description": "TypeScript check after editing .ts/.tsx files"
},
{
"matcher": "tool == \"Edit\" && tool_input.file_path matches \"\\\\.(ts|tsx|js|jsx)$\"",
"hooks": [
{
"type": "command",
"command": "node -e \"const fs=require('fs');let d='';process.stdin.on('data',c=>d+=c);process.stdin.on('end',()=>{const i=JSON.parse(d);const p=i.tool_input?.file_path;if(p&&fs.existsSync(p)){const c=fs.readFileSync(p,'utf8');const lines=c.split('\\n');const matches=[];lines.forEach((l,idx)=>{if(/console\\.log/.test(l))matches.push((idx+1)+': '+l.trim())});if(matches.length){console.error('[Hook] WARNING: console.log found in '+p);matches.slice(0,5).forEach(m=>console.error(m));console.error('[Hook] Remove console.log before committing')}}console.log(d)})\""
}
],
"description": "Warn about console.log statements after edits"
}
],
"Stop": [
{
"matcher": "*",
"hooks": [
{
"type": "command",
"command": "node -e \"const{execSync}=require('child_process');const fs=require('fs');let d='';process.stdin.on('data',c=>d+=c);process.stdin.on('end',()=>{try{execSync('git rev-parse --git-dir',{stdio:'pipe'})}catch{console.log(d);process.exit(0)}try{const files=execSync('git diff --name-only HEAD',{encoding:'utf8',stdio:['pipe','pipe','pipe']}).split('\\n').filter(f=>/\\.(ts|tsx|js|jsx)$/.test(f)&&fs.existsSync(f));let hasConsole=false;for(const f of files){if(fs.readFileSync(f,'utf8').includes('console.log')){console.error('[Hook] WARNING: console.log found in '+f);hasConsole=true}}if(hasConsole)console.error('[Hook] Remove console.log statements before committing')}catch(e){}console.log(d)})\""
}
],
"description": "Check for console.log in modified files after each response"
}
],
"SessionEnd": [
{
"matcher": "*",
"hooks": [
{
"type": "command",
"command": "node \"${CLAUDE_PLUGIN_ROOT}/scripts/hooks/session-end.js\""
}
],
"description": "Persist session state on end"
},
{
"matcher": "*",
"hooks": [
{
"type": "command",
"command": "node \"${CLAUDE_PLUGIN_ROOT}/scripts/hooks/evaluate-session.js\""
}
],
"description": "Evaluate session for extractable patterns"
}
]
}
}

View File

@@ -0,0 +1,36 @@
#!/bin/bash
# PreCompact Hook - Save state before context compaction
#
# Runs before Claude compacts context, giving you a chance to
# preserve important state that might get lost in summarization.
#
# Hook config (in ~/.claude/settings.json):
# {
# "hooks": {
# "PreCompact": [{
# "matcher": "*",
# "hooks": [{
# "type": "command",
# "command": "~/.claude/hooks/memory-persistence/pre-compact.sh"
# }]
# }]
# }
# }
SESSIONS_DIR="${HOME}/.claude/sessions"
COMPACTION_LOG="${SESSIONS_DIR}/compaction-log.txt"
mkdir -p "$SESSIONS_DIR"
# Log compaction event with timestamp
echo "[$(date '+%Y-%m-%d %H:%M:%S')] Context compaction triggered" >> "$COMPACTION_LOG"
# If there's an active session file, note the compaction
ACTIVE_SESSION=$(ls -t "$SESSIONS_DIR"/*.tmp 2>/dev/null | head -1)
if [ -n "$ACTIVE_SESSION" ]; then
echo "" >> "$ACTIVE_SESSION"
echo "---" >> "$ACTIVE_SESSION"
echo "**[Compaction occurred at $(date '+%H:%M')]** - Context was summarized" >> "$ACTIVE_SESSION"
fi
echo "[PreCompact] State saved before compaction" >&2

View File

@@ -0,0 +1,61 @@
#!/bin/bash
# Stop Hook (Session End) - Persist learnings when session ends
#
# Runs when Claude session ends. Creates/updates session log file
# with timestamp for continuity tracking.
#
# Hook config (in ~/.claude/settings.json):
# {
# "hooks": {
# "Stop": [{
# "matcher": "*",
# "hooks": [{
# "type": "command",
# "command": "~/.claude/hooks/memory-persistence/session-end.sh"
# }]
# }]
# }
# }
SESSIONS_DIR="${HOME}/.claude/sessions"
TODAY=$(date '+%Y-%m-%d')
SESSION_FILE="${SESSIONS_DIR}/${TODAY}-session.tmp"
mkdir -p "$SESSIONS_DIR"
# If session file exists for today, update the end time
if [ -f "$SESSION_FILE" ]; then
# Update Last Updated timestamp
sed -i '' "s/\*\*Last Updated:\*\*.*/\*\*Last Updated:\*\* $(date '+%H:%M')/" "$SESSION_FILE" 2>/dev/null || \
sed -i "s/\*\*Last Updated:\*\*.*/\*\*Last Updated:\*\* $(date '+%H:%M')/" "$SESSION_FILE" 2>/dev/null
echo "[SessionEnd] Updated session file: $SESSION_FILE" >&2
else
# Create new session file with template
cat > "$SESSION_FILE" << EOF
# Session: $(date '+%Y-%m-%d')
**Date:** $TODAY
**Started:** $(date '+%H:%M')
**Last Updated:** $(date '+%H:%M')
---
## Current State
[Session context goes here]
### Completed
- [ ]
### In Progress
- [ ]
### Notes for Next Session
-
### Context to Load
\`\`\`
[relevant files]
\`\`\`
EOF
echo "[SessionEnd] Created session file: $SESSION_FILE" >&2
fi

View File

@@ -0,0 +1,37 @@
#!/bin/bash
# SessionStart Hook - Load previous context on new session
#
# Runs when a new Claude session starts. Checks for recent session
# files and notifies Claude of available context to load.
#
# Hook config (in ~/.claude/settings.json):
# {
# "hooks": {
# "SessionStart": [{
# "matcher": "*",
# "hooks": [{
# "type": "command",
# "command": "~/.claude/hooks/memory-persistence/session-start.sh"
# }]
# }]
# }
# }
SESSIONS_DIR="${HOME}/.claude/sessions"
LEARNED_DIR="${HOME}/.claude/skills/learned"
# Check for recent session files (last 7 days)
recent_sessions=$(find "$SESSIONS_DIR" -name "*.tmp" -mtime -7 2>/dev/null | wc -l | tr -d ' ')
if [ "$recent_sessions" -gt 0 ]; then
latest=$(ls -t "$SESSIONS_DIR"/*.tmp 2>/dev/null | head -1)
echo "[SessionStart] Found $recent_sessions recent session(s)" >&2
echo "[SessionStart] Latest: $latest" >&2
fi
# Check for learned skills
learned_count=$(find "$LEARNED_DIR" -name "*.md" 2>/dev/null | wc -l | tr -d ' ')
if [ "$learned_count" -gt 0 ]; then
echo "[SessionStart] $learned_count learned skill(s) available in $LEARNED_DIR" >&2
fi

View File

@@ -0,0 +1,52 @@
#!/bin/bash
# Strategic Compact Suggester
# Runs on PreToolUse or periodically to suggest manual compaction at logical intervals
#
# Why manual over auto-compact:
# - Auto-compact happens at arbitrary points, often mid-task
# - Strategic compacting preserves context through logical phases
# - Compact after exploration, before execution
# - Compact after completing a milestone, before starting next
#
# Hook config (in ~/.claude/settings.json):
# {
# "hooks": {
# "PreToolUse": [{
# "matcher": "Edit|Write",
# "hooks": [{
# "type": "command",
# "command": "~/.claude/skills/strategic-compact/suggest-compact.sh"
# }]
# }]
# }
# }
#
# Criteria for suggesting compact:
# - Session has been running for extended period
# - Large number of tool calls made
# - Transitioning from research/exploration to implementation
# - Plan has been finalized
# Track tool call count (increment in a temp file)
COUNTER_FILE="/tmp/claude-tool-count-$$"
THRESHOLD=${COMPACT_THRESHOLD:-50}
# Initialize or increment counter
if [ -f "$COUNTER_FILE" ]; then
count=$(cat "$COUNTER_FILE")
count=$((count + 1))
echo "$count" > "$COUNTER_FILE"
else
echo "1" > "$COUNTER_FILE"
count=1
fi
# Suggest compact after threshold tool calls
if [ "$count" -eq "$THRESHOLD" ]; then
echo "[StrategicCompact] $THRESHOLD tool calls reached - consider /compact if transitioning phases" >&2
fi
# Suggest at regular intervals after threshold
if [ "$count" -gt "$THRESHOLD" ] && [ $((count % 25)) -eq 0 ]; then
echo "[StrategicCompact] $count tool calls - good checkpoint for /compact if context is stale" >&2
fi

View File

@@ -7,7 +7,8 @@
"Edit(*)",
"Glob(*)",
"Grep(*)",
"Task(*)"
"Task(*)",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && pytest tests/web/test_batch_upload_routes.py::TestBatchUploadRoutes::test_upload_batch_async_mode_default -v -s 2>&1 | head -100\")"
]
}
}

View File

@@ -75,7 +75,39 @@
"Bash(wsl -e bash -c \"ls -la /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2/data/dataset/train/\")",
"Bash(wsl -e bash -c \"ls -la /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2/data/structured_data/*.csv 2>/dev/null | head -20\")",
"Bash(tasklist:*)",
"Bash(findstr:*)"
"Bash(findstr:*)",
"Bash(wsl bash -c \"ps aux | grep -E ''python.*train'' | grep -v grep\")",
"Bash(wsl bash -c \"ls -la /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2/runs/train/invoice_fields/\")",
"Bash(wsl bash -c \"cat /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2/runs/train/invoice_fields/results.csv\")",
"Bash(wsl bash -c \"ls -la /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2/runs/train/invoice_fields/weights/\")",
"Bash(wsl bash -c \"cat ''/mnt/c/Users/yaoji/AppData/Local/Temp/claude/c--Users-yaoji-git-ColaCoder-invoice-master-poc-v2/tasks/b8d8565.output'' 2>/dev/null | tail -100\")",
"Bash(wsl bash -c:*)",
"Bash(wsl bash -c \"cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && python -m pytest tests/web/test_admin_*.py -v --tb=short 2>&1 | head -120\")",
"Bash(wsl bash -c \"cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && python -m pytest tests/web/test_admin_*.py -v --tb=short 2>&1 | head -80\")",
"Bash(wsl bash -c \"cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && python -m pytest tests/ -v --tb=short 2>&1 | tail -60\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python -m pytest tests/data/test_admin_models_v2.py -v 2>&1 | head -100\")",
"Bash(dir src\\\\web\\\\*admin* src\\\\web\\\\*batch*)",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python3 -c \"\"\n# Test FastAPI Form parsing behavior\nfrom fastapi import Form\nfrom typing import Annotated\n\n# Simulate what happens when data={''upload_source'': ''ui''} is sent\n# and async_mode is not in the data\nprint\\(''Test 1: async_mode not provided, default should be True''\\)\nprint\\(''Expected: True''\\)\n\n# In FastAPI, when Form has a default, it will use that default if not provided\n# But we need to verify this is actually happening\n\"\"\")",
"Bash(wsl bash -c \"cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && sed -i ''s/from src\\\\.data import AutoLabelReport/from training.data.autolabel_report import AutoLabelReport/g'' packages/training/training/processing/autolabel_tasks.py && sed -i ''s/from src\\\\.processing\\\\.autolabel_tasks/from training.processing.autolabel_tasks/g'' packages/inference/inference/web/services/db_autolabel.py\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && pytest tests/web/test_dataset_routes.py -v --tb=short 2>&1 | tail -20\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && pytest --tb=short -q 2>&1 | tail -5\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python -m pytest tests/web/test_dataset_builder.py -v --tb=short 2>&1 | head -150\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python -m pytest tests/web/test_dataset_builder.py -v --tb=short 2>&1 | tail -50\")",
"Bash(wsl bash -c \"lsof -ti:8000 | xargs -r kill -9 2>/dev/null; echo ''Port 8000 cleared''\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python run_server.py\")",
"Bash(wsl bash -c \"curl -s http://localhost:3001 2>/dev/null | head -5 || echo ''Frontend not responding''\")",
"Bash(wsl bash -c \"curl -s http://localhost:3000 2>/dev/null | head -5 || echo ''Port 3000 not responding''\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python -c ''from shared.training import YOLOTrainer, TrainingConfig, TrainingResult; print\\(\"\"Shared training module imported successfully\"\"\\)''\")",
"Bash(npm run dev:*)",
"Bash(ping:*)",
"Bash(wsl bash -c \"cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2/frontend && npm run dev\")",
"Bash(git checkout:*)",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && PGPASSWORD=$DB_PASSWORD psql -h 192.168.68.31 -U docmaster -d docmaster -f migrations/006_model_versions.sql 2>&1\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python -c \"\"\nimport os\nimport psycopg2\nfrom pathlib import Path\n\n# Get connection details\nhost = os.getenv\\(''DB_HOST'', ''192.168.68.31''\\)\nport = os.getenv\\(''DB_PORT'', ''5432''\\)\ndbname = os.getenv\\(''DB_NAME'', ''docmaster''\\)\nuser = os.getenv\\(''DB_USER'', ''docmaster''\\)\npassword = os.getenv\\(''DB_PASSWORD'', ''''\\)\n\nprint\\(f''Connecting to {host}:{port}/{dbname}...''\\)\n\nconn = psycopg2.connect\\(host=host, port=port, dbname=dbname, user=user, password=password\\)\nconn.autocommit = True\ncursor = conn.cursor\\(\\)\n\n# Run migration 006\nprint\\(''Running migration 006_model_versions.sql...''\\)\nsql = Path\\(''migrations/006_model_versions.sql''\\).read_text\\(\\)\ncursor.execute\\(sql\\)\nprint\\(''Migration 006 complete!''\\)\n\n# Run migration 007\nprint\\(''Running migration 007_training_tasks_extra_columns.sql...''\\)\nsql = Path\\(''migrations/007_training_tasks_extra_columns.sql''\\).read_text\\(\\)\ncursor.execute\\(sql\\)\nprint\\(''Migration 007 complete!''\\)\n\ncursor.close\\(\\)\nconn.close\\(\\)\nprint\\(''All migrations completed successfully!''\\)\n\"\"\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && DB_HOST=192.168.68.31 DB_PORT=5432 DB_NAME=docmaster DB_USER=docmaster DB_PASSWORD=0412220 python -c \"\"\nimport os\nimport psycopg2\n\nhost = os.getenv\\(''DB_HOST''\\)\nport = os.getenv\\(''DB_PORT''\\)\ndbname = os.getenv\\(''DB_NAME''\\)\nuser = os.getenv\\(''DB_USER''\\)\npassword = os.getenv\\(''DB_PASSWORD''\\)\n\nconn = psycopg2.connect\\(host=host, port=port, dbname=dbname, user=user, password=password\\)\ncursor = conn.cursor\\(\\)\n\n# Get all model versions\ncursor.execute\\(''''''\n SELECT version_id, version, name, status, is_active, metrics_mAP, document_count, model_path, created_at\n FROM model_versions\n ORDER BY created_at DESC\n''''''\\)\nprint\\(''Existing model versions:''\\)\nfor row in cursor.fetchall\\(\\):\n print\\(f'' ID: {row[0][:8]}...''\\)\n print\\(f'' Version: {row[1]}''\\)\n print\\(f'' Name: {row[2]}''\\)\n print\\(f'' Status: {row[3]}''\\)\n print\\(f'' Active: {row[4]}''\\)\n print\\(f'' mAP: {row[5]}''\\)\n print\\(f'' Docs: {row[6]}''\\)\n print\\(f'' Path: {row[7]}''\\)\n print\\(f'' Created: {row[8]}''\\)\n print\\(\\)\n\ncursor.close\\(\\)\nconn.close\\(\\)\n\"\"\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && DB_HOST=192.168.68.31 DB_PORT=5432 DB_NAME=docmaster DB_USER=docmaster DB_PASSWORD=0412220 python -c \"\"\nimport os\nimport psycopg2\n\nhost = os.getenv\\(''DB_HOST''\\)\nport = os.getenv\\(''DB_PORT''\\)\ndbname = os.getenv\\(''DB_NAME''\\)\nuser = os.getenv\\(''DB_USER''\\)\npassword = os.getenv\\(''DB_PASSWORD''\\)\n\nconn = psycopg2.connect\\(host=host, port=port, dbname=dbname, user=user, password=password\\)\ncursor = conn.cursor\\(\\)\n\n# Get all model versions - use double quotes for case-sensitive column names\ncursor.execute\\(''''''\n SELECT version_id, version, name, status, is_active, \\\\\"\"metrics_mAP\\\\\"\", document_count, model_path, created_at\n FROM model_versions\n ORDER BY created_at DESC\n''''''\\)\nprint\\(''Existing model versions:''\\)\nfor row in cursor.fetchall\\(\\):\n print\\(f'' ID: {str\\(row[0]\\)[:8]}...''\\)\n print\\(f'' Version: {row[1]}''\\)\n print\\(f'' Name: {row[2]}''\\)\n print\\(f'' Status: {row[3]}''\\)\n print\\(f'' Active: {row[4]}''\\)\n print\\(f'' mAP: {row[5]}''\\)\n print\\(f'' Docs: {row[6]}''\\)\n print\\(f'' Path: {row[7]}''\\)\n print\\(f'' Created: {row[8]}''\\)\n print\\(\\)\n\ncursor.close\\(\\)\nconn.close\\(\\)\n\"\"\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python -m pytest tests/shared/fields/test_field_config.py -v 2>&1 | head -100\")",
"Bash(wsl bash -c \"source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python -m pytest tests/web/core/test_task_interface.py -v 2>&1 | head -60\")"
],
"deny": [],
"ask": [],

View File

@@ -0,0 +1,314 @@
# Backend Development Patterns
Backend architecture patterns for Python/FastAPI/PostgreSQL applications.
## API Design
### RESTful Structure
```
GET /api/v1/documents # List
GET /api/v1/documents/{id} # Get
POST /api/v1/documents # Create
PUT /api/v1/documents/{id} # Replace
PATCH /api/v1/documents/{id} # Update
DELETE /api/v1/documents/{id} # Delete
GET /api/v1/documents?status=processed&sort=created_at&limit=20&offset=0
```
### FastAPI Route Pattern
```python
from fastapi import APIRouter, HTTPException, Depends, Query, File, UploadFile
from pydantic import BaseModel
router = APIRouter(prefix="/api/v1", tags=["inference"])
@router.post("/infer", response_model=ApiResponse[InferenceResult])
async def infer_document(
file: UploadFile = File(...),
confidence_threshold: float = Query(0.5, ge=0, le=1),
service: InferenceService = Depends(get_inference_service)
) -> ApiResponse[InferenceResult]:
result = await service.process(file, confidence_threshold)
return ApiResponse(success=True, data=result)
```
### Consistent Response Schema
```python
from typing import Generic, TypeVar
T = TypeVar('T')
class ApiResponse(BaseModel, Generic[T]):
success: bool
data: T | None = None
error: str | None = None
meta: dict | None = None
```
## Core Patterns
### Repository Pattern
```python
from typing import Protocol
class DocumentRepository(Protocol):
def find_all(self, filters: dict | None = None) -> list[Document]: ...
def find_by_id(self, id: str) -> Document | None: ...
def create(self, data: dict) -> Document: ...
def update(self, id: str, data: dict) -> Document: ...
def delete(self, id: str) -> None: ...
```
### Service Layer
```python
class InferenceService:
def __init__(self, model_path: str, use_gpu: bool = True):
self.pipeline = InferencePipeline(model_path=model_path, use_gpu=use_gpu)
async def process(self, file: UploadFile, confidence_threshold: float) -> InferenceResult:
temp_path = self._save_temp_file(file)
try:
return self.pipeline.process_pdf(temp_path)
finally:
temp_path.unlink(missing_ok=True)
```
### Dependency Injection
```python
from functools import lru_cache
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
db_host: str = "localhost"
db_password: str
model_path: str = "runs/train/invoice_fields/weights/best.pt"
class Config:
env_file = ".env"
@lru_cache()
def get_settings() -> Settings:
return Settings()
def get_inference_service(settings: Settings = Depends(get_settings)) -> InferenceService:
return InferenceService(model_path=settings.model_path)
```
## Database Patterns
### Connection Pooling
```python
from psycopg2 import pool
from contextlib import contextmanager
db_pool = pool.ThreadedConnectionPool(minconn=2, maxconn=10, **db_config)
@contextmanager
def get_db_connection():
conn = db_pool.getconn()
try:
yield conn
finally:
db_pool.putconn(conn)
```
### Query Optimization
```python
# GOOD: Select only needed columns
cur.execute("""
SELECT id, status, fields->>'InvoiceNumber' as invoice_number
FROM documents WHERE status = %s
ORDER BY created_at DESC LIMIT %s
""", ('processed', 10))
# BAD: SELECT * FROM documents
```
### N+1 Prevention
```python
# BAD: N+1 queries
for doc in documents:
doc.labels = get_labels(doc.id) # N queries
# GOOD: Batch fetch with JOIN
cur.execute("""
SELECT d.id, d.status, array_agg(l.label) as labels
FROM documents d
LEFT JOIN document_labels l ON d.id = l.document_id
GROUP BY d.id, d.status
""")
```
### Transaction Pattern
```python
def create_document_with_labels(doc_data: dict, labels: list[dict]) -> str:
with get_db_connection() as conn:
try:
with conn.cursor() as cur:
cur.execute("INSERT INTO documents ... RETURNING id", ...)
doc_id = cur.fetchone()[0]
for label in labels:
cur.execute("INSERT INTO document_labels ...", ...)
conn.commit()
return doc_id
except Exception:
conn.rollback()
raise
```
## Caching
```python
from cachetools import TTLCache
_cache = TTLCache(maxsize=1000, ttl=300)
def get_document_cached(doc_id: str) -> Document | None:
if doc_id in _cache:
return _cache[doc_id]
doc = repo.find_by_id(doc_id)
if doc:
_cache[doc_id] = doc
return doc
```
## Error Handling
### Exception Hierarchy
```python
class AppError(Exception):
def __init__(self, message: str, status_code: int = 500):
self.message = message
self.status_code = status_code
class NotFoundError(AppError):
def __init__(self, resource: str, id: str):
super().__init__(f"{resource} not found: {id}", 404)
class ValidationError(AppError):
def __init__(self, message: str):
super().__init__(message, 400)
```
### FastAPI Exception Handler
```python
@app.exception_handler(AppError)
async def app_error_handler(request: Request, exc: AppError):
return JSONResponse(status_code=exc.status_code, content={"success": False, "error": exc.message})
@app.exception_handler(Exception)
async def generic_error_handler(request: Request, exc: Exception):
logger.error(f"Unexpected error: {exc}", exc_info=True)
return JSONResponse(status_code=500, content={"success": False, "error": "Internal server error"})
```
### Retry with Backoff
```python
async def retry_with_backoff(fn, max_retries: int = 3, base_delay: float = 1.0):
last_error = None
for attempt in range(max_retries):
try:
return await fn() if asyncio.iscoroutinefunction(fn) else fn()
except Exception as e:
last_error = e
if attempt < max_retries - 1:
await asyncio.sleep(base_delay * (2 ** attempt))
raise last_error
```
## Rate Limiting
```python
from time import time
from collections import defaultdict
class RateLimiter:
def __init__(self):
self.requests: dict[str, list[float]] = defaultdict(list)
def check_limit(self, identifier: str, max_requests: int, window_sec: int) -> bool:
now = time()
self.requests[identifier] = [t for t in self.requests[identifier] if now - t < window_sec]
if len(self.requests[identifier]) >= max_requests:
return False
self.requests[identifier].append(now)
return True
limiter = RateLimiter()
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
ip = request.client.host
if not limiter.check_limit(ip, max_requests=100, window_sec=60):
return JSONResponse(status_code=429, content={"error": "Rate limit exceeded"})
return await call_next(request)
```
## Logging & Middleware
### Request Logging
```python
@app.middleware("http")
async def log_requests(request: Request, call_next):
request_id = str(uuid.uuid4())[:8]
start_time = time.time()
logger.info(f"[{request_id}] {request.method} {request.url.path}")
response = await call_next(request)
duration_ms = (time.time() - start_time) * 1000
logger.info(f"[{request_id}] Completed {response.status_code} in {duration_ms:.2f}ms")
return response
```
### Structured Logging
```python
class JSONFormatter(logging.Formatter):
def format(self, record):
return json.dumps({
"timestamp": datetime.utcnow().isoformat(),
"level": record.levelname,
"message": record.getMessage(),
"module": record.module,
})
```
## Background Tasks
```python
from fastapi import BackgroundTasks
def send_notification(document_id: str, status: str):
logger.info(f"Notification: {document_id} -> {status}")
@router.post("/infer")
async def infer(file: UploadFile, background_tasks: BackgroundTasks):
result = await process_document(file)
background_tasks.add_task(send_notification, result.document_id, "completed")
return result
```
## Key Principles
- Repository pattern: Abstract data access
- Service layer: Business logic separated from routes
- Dependency injection via `Depends()`
- Connection pooling for database
- Parameterized queries only (no f-strings in SQL)
- Batch fetch to prevent N+1
- Consistent `ApiResponse[T]` format
- Exception hierarchy with proper status codes
- Rate limit by IP
- Structured logging with request ID

View File

@@ -0,0 +1,665 @@
---
name: coding-standards
description: Universal coding standards, best practices, and patterns for Python, FastAPI, and data processing development.
---
# Coding Standards & Best Practices
Python coding standards for the Invoice Master project.
## Code Quality Principles
### 1. Readability First
- Code is read more than written
- Clear variable and function names
- Self-documenting code preferred over comments
- Consistent formatting (follow PEP 8)
### 2. KISS (Keep It Simple, Stupid)
- Simplest solution that works
- Avoid over-engineering
- No premature optimization
- Easy to understand > clever code
### 3. DRY (Don't Repeat Yourself)
- Extract common logic into functions
- Create reusable utilities
- Share modules across the codebase
- Avoid copy-paste programming
### 4. YAGNI (You Aren't Gonna Need It)
- Don't build features before they're needed
- Avoid speculative generality
- Add complexity only when required
- Start simple, refactor when needed
## Python Standards
### Variable Naming
```python
# GOOD: Descriptive names
invoice_number = "INV-2024-001"
is_valid_document = True
total_confidence_score = 0.95
# BAD: Unclear names
inv = "INV-2024-001"
flag = True
x = 0.95
```
### Function Naming
```python
# GOOD: Verb-noun pattern with type hints
def extract_invoice_fields(pdf_path: Path) -> dict[str, str]:
"""Extract fields from invoice PDF."""
...
def calculate_confidence(predictions: list[float]) -> float:
"""Calculate average confidence score."""
...
def is_valid_bankgiro(value: str) -> bool:
"""Check if value is valid Bankgiro number."""
...
# BAD: Unclear or noun-only
def invoice(path):
...
def confidence(p):
...
def bankgiro(v):
...
```
### Type Hints (REQUIRED)
```python
# GOOD: Full type annotations
from typing import Optional
from pathlib import Path
from dataclasses import dataclass
@dataclass
class InferenceResult:
document_id: str
fields: dict[str, str]
confidence: dict[str, float]
processing_time_ms: float
def process_document(
pdf_path: Path,
confidence_threshold: float = 0.5
) -> InferenceResult:
"""Process PDF and return extracted fields."""
...
# BAD: No type hints
def process_document(pdf_path, confidence_threshold=0.5):
...
```
### Immutability Pattern (CRITICAL)
```python
# GOOD: Create new objects, don't mutate
def update_fields(fields: dict[str, str], updates: dict[str, str]) -> dict[str, str]:
return {**fields, **updates}
def add_item(items: list[str], new_item: str) -> list[str]:
return [*items, new_item]
# BAD: Direct mutation
def update_fields(fields: dict[str, str], updates: dict[str, str]) -> dict[str, str]:
fields.update(updates) # MUTATION!
return fields
def add_item(items: list[str], new_item: str) -> list[str]:
items.append(new_item) # MUTATION!
return items
```
### Error Handling
```python
import logging
logger = logging.getLogger(__name__)
# GOOD: Comprehensive error handling with logging
def load_model(model_path: Path) -> Model:
"""Load YOLO model from path."""
try:
if not model_path.exists():
raise FileNotFoundError(f"Model not found: {model_path}")
model = YOLO(str(model_path))
logger.info(f"Model loaded: {model_path}")
return model
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise RuntimeError(f"Model loading failed: {model_path}") from e
# BAD: No error handling
def load_model(model_path):
return YOLO(str(model_path))
# BAD: Bare except
def load_model(model_path):
try:
return YOLO(str(model_path))
except: # Never use bare except!
return None
```
### Async Best Practices
```python
import asyncio
# GOOD: Parallel execution when possible
async def process_batch(pdf_paths: list[Path]) -> list[InferenceResult]:
tasks = [process_document(path) for path in pdf_paths]
results = await asyncio.gather(*tasks, return_exceptions=True)
# Handle exceptions
valid_results = []
for path, result in zip(pdf_paths, results):
if isinstance(result, Exception):
logger.error(f"Failed to process {path}: {result}")
else:
valid_results.append(result)
return valid_results
# BAD: Sequential when unnecessary
async def process_batch(pdf_paths: list[Path]) -> list[InferenceResult]:
results = []
for path in pdf_paths:
result = await process_document(path)
results.append(result)
return results
```
### Context Managers
```python
from contextlib import contextmanager
from pathlib import Path
import tempfile
# GOOD: Proper resource management
@contextmanager
def temp_pdf_copy(pdf_path: Path):
"""Create temporary copy of PDF for processing."""
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp:
tmp.write(pdf_path.read_bytes())
tmp_path = Path(tmp.name)
try:
yield tmp_path
finally:
tmp_path.unlink(missing_ok=True)
# Usage
with temp_pdf_copy(original_pdf) as tmp_pdf:
result = process_pdf(tmp_pdf)
```
## FastAPI Best Practices
### Route Structure
```python
from fastapi import APIRouter, HTTPException, Depends, Query, File, UploadFile
from pydantic import BaseModel
router = APIRouter(prefix="/api/v1", tags=["inference"])
class InferenceResponse(BaseModel):
success: bool
document_id: str
fields: dict[str, str]
confidence: dict[str, float]
processing_time_ms: float
@router.post("/infer", response_model=InferenceResponse)
async def infer_document(
file: UploadFile = File(...),
confidence_threshold: float = Query(0.5, ge=0.0, le=1.0)
) -> InferenceResponse:
"""Process invoice PDF and extract fields."""
if not file.filename.endswith(".pdf"):
raise HTTPException(status_code=400, detail="Only PDF files accepted")
result = await inference_service.process(file, confidence_threshold)
return InferenceResponse(
success=True,
document_id=result.document_id,
fields=result.fields,
confidence=result.confidence,
processing_time_ms=result.processing_time_ms
)
```
### Input Validation with Pydantic
```python
from pydantic import BaseModel, Field, field_validator
from datetime import date
import re
class InvoiceData(BaseModel):
invoice_number: str = Field(..., min_length=1, max_length=50)
invoice_date: date
amount: float = Field(..., gt=0)
bankgiro: str | None = None
ocr_number: str | None = None
@field_validator("bankgiro")
@classmethod
def validate_bankgiro(cls, v: str | None) -> str | None:
if v is None:
return None
# Bankgiro: 7-8 digits
cleaned = re.sub(r"[^0-9]", "", v)
if not (7 <= len(cleaned) <= 8):
raise ValueError("Bankgiro must be 7-8 digits")
return cleaned
@field_validator("ocr_number")
@classmethod
def validate_ocr(cls, v: str | None) -> str | None:
if v is None:
return None
# OCR: 2-25 digits
cleaned = re.sub(r"[^0-9]", "", v)
if not (2 <= len(cleaned) <= 25):
raise ValueError("OCR must be 2-25 digits")
return cleaned
```
### Response Format
```python
from pydantic import BaseModel
from typing import Generic, TypeVar
T = TypeVar("T")
class ApiResponse(BaseModel, Generic[T]):
success: bool
data: T | None = None
error: str | None = None
meta: dict | None = None
# Success response
return ApiResponse(
success=True,
data=result,
meta={"processing_time_ms": elapsed_ms}
)
# Error response
return ApiResponse(
success=False,
error="Invalid PDF format"
)
```
## File Organization
### Project Structure
```
src/
├── cli/ # Command-line interfaces
│ ├── autolabel.py
│ ├── train.py
│ └── infer.py
├── pdf/ # PDF processing
│ ├── extractor.py
│ └── renderer.py
├── ocr/ # OCR processing
│ ├── paddle_ocr.py
│ └── machine_code_parser.py
├── inference/ # Inference pipeline
│ ├── pipeline.py
│ ├── yolo_detector.py
│ └── field_extractor.py
├── normalize/ # Field normalization
│ ├── base.py
│ ├── date_normalizer.py
│ └── amount_normalizer.py
├── web/ # FastAPI application
│ ├── app.py
│ ├── routes.py
│ ├── services.py
│ └── schemas.py
└── utils/ # Shared utilities
├── validators.py
├── text_cleaner.py
└── logging.py
tests/ # Mirror of src structure
├── test_pdf/
├── test_ocr/
└── test_inference/
```
### File Naming
```
src/ocr/paddle_ocr.py # snake_case for modules
src/inference/yolo_detector.py # snake_case for modules
tests/test_paddle_ocr.py # test_ prefix for tests
config.py # snake_case for config
```
### Module Size Guidelines
- **Maximum**: 800 lines per file
- **Typical**: 200-400 lines per file
- **Functions**: Max 50 lines each
- Extract utilities when modules grow too large
## Comments & Documentation
### When to Comment
```python
# GOOD: Explain WHY, not WHAT
# Swedish Bankgiro uses Luhn algorithm with weight [1,2,1,2...]
def validate_bankgiro_checksum(bankgiro: str) -> bool:
...
# Payment line format: 7 groups separated by #, checksum at end
def parse_payment_line(line: str) -> PaymentLineData:
...
# BAD: Stating the obvious
# Increment counter by 1
count += 1
# Set name to user's name
name = user.name
```
### Docstrings for Public APIs
```python
def extract_invoice_fields(
pdf_path: Path,
confidence_threshold: float = 0.5,
use_gpu: bool = True
) -> InferenceResult:
"""Extract structured fields from Swedish invoice PDF.
Uses YOLOv11 for field detection and PaddleOCR for text extraction.
Applies field-specific normalization and validation.
Args:
pdf_path: Path to the invoice PDF file.
confidence_threshold: Minimum confidence for field detection (0.0-1.0).
use_gpu: Whether to use GPU acceleration.
Returns:
InferenceResult containing extracted fields and confidence scores.
Raises:
FileNotFoundError: If PDF file doesn't exist.
ProcessingError: If OCR or detection fails.
Example:
>>> result = extract_invoice_fields(Path("invoice.pdf"))
>>> print(result.fields["invoice_number"])
"INV-2024-001"
"""
...
```
## Performance Best Practices
### Caching
```python
from functools import lru_cache
from cachetools import TTLCache
# Static data: LRU cache
@lru_cache(maxsize=100)
def get_field_config(field_name: str) -> FieldConfig:
"""Load field configuration (cached)."""
return load_config(field_name)
# Dynamic data: TTL cache
_document_cache = TTLCache(maxsize=1000, ttl=300) # 5 minutes
def get_document_cached(doc_id: str) -> Document | None:
if doc_id in _document_cache:
return _document_cache[doc_id]
doc = repo.find_by_id(doc_id)
if doc:
_document_cache[doc_id] = doc
return doc
```
### Database Queries
```python
# GOOD: Select only needed columns
cur.execute("""
SELECT id, status, fields->>'invoice_number'
FROM documents
WHERE status = %s
LIMIT %s
""", ('processed', 10))
# BAD: Select everything
cur.execute("SELECT * FROM documents")
# GOOD: Batch operations
cur.executemany(
"INSERT INTO labels (doc_id, field, value) VALUES (%s, %s, %s)",
[(doc_id, f, v) for f, v in fields.items()]
)
# BAD: Individual inserts in loop
for field, value in fields.items():
cur.execute("INSERT INTO labels ...", (doc_id, field, value))
```
### Lazy Loading
```python
class InferencePipeline:
def __init__(self, model_path: Path):
self.model_path = model_path
self._model: YOLO | None = None
self._ocr: PaddleOCR | None = None
@property
def model(self) -> YOLO:
"""Lazy load YOLO model."""
if self._model is None:
self._model = YOLO(str(self.model_path))
return self._model
@property
def ocr(self) -> PaddleOCR:
"""Lazy load PaddleOCR."""
if self._ocr is None:
self._ocr = PaddleOCR(use_angle_cls=True, lang="latin")
return self._ocr
```
## Testing Standards
### Test Structure (AAA Pattern)
```python
def test_extract_bankgiro_valid():
# Arrange
text = "Bankgiro: 123-4567"
# Act
result = extract_bankgiro(text)
# Assert
assert result == "1234567"
def test_extract_bankgiro_invalid_returns_none():
# Arrange
text = "No bankgiro here"
# Act
result = extract_bankgiro(text)
# Assert
assert result is None
```
### Test Naming
```python
# GOOD: Descriptive test names
def test_parse_payment_line_extracts_all_fields(): ...
def test_parse_payment_line_handles_missing_checksum(): ...
def test_validate_ocr_returns_false_for_invalid_checksum(): ...
# BAD: Vague test names
def test_parse(): ...
def test_works(): ...
def test_payment_line(): ...
```
### Fixtures
```python
import pytest
from pathlib import Path
@pytest.fixture
def sample_invoice_pdf(tmp_path: Path) -> Path:
"""Create sample invoice PDF for testing."""
pdf_path = tmp_path / "invoice.pdf"
# Create test PDF...
return pdf_path
@pytest.fixture
def inference_pipeline(sample_model_path: Path) -> InferencePipeline:
"""Create inference pipeline with test model."""
return InferencePipeline(sample_model_path)
def test_process_invoice(inference_pipeline, sample_invoice_pdf):
result = inference_pipeline.process(sample_invoice_pdf)
assert result.fields.get("invoice_number") is not None
```
## Code Smell Detection
### 1. Long Functions
```python
# BAD: Function > 50 lines
def process_document():
# 100 lines of code...
# GOOD: Split into smaller functions
def process_document(pdf_path: Path) -> InferenceResult:
image = render_pdf(pdf_path)
detections = detect_fields(image)
ocr_results = extract_text(image, detections)
fields = normalize_fields(ocr_results)
return build_result(fields)
```
### 2. Deep Nesting
```python
# BAD: 5+ levels of nesting
if document:
if document.is_valid:
if document.has_fields:
if field in document.fields:
if document.fields[field]:
# Do something
# GOOD: Early returns
if not document:
return None
if not document.is_valid:
return None
if not document.has_fields:
return None
if field not in document.fields:
return None
if not document.fields[field]:
return None
# Do something
```
### 3. Magic Numbers
```python
# BAD: Unexplained numbers
if confidence > 0.5:
...
time.sleep(3)
# GOOD: Named constants
CONFIDENCE_THRESHOLD = 0.5
RETRY_DELAY_SECONDS = 3
if confidence > CONFIDENCE_THRESHOLD:
...
time.sleep(RETRY_DELAY_SECONDS)
```
### 4. Mutable Default Arguments
```python
# BAD: Mutable default argument
def process_fields(fields: list = []): # DANGEROUS!
fields.append("new_field")
return fields
# GOOD: Use None as default
def process_fields(fields: list | None = None) -> list:
if fields is None:
fields = []
return [*fields, "new_field"]
```
## Logging Standards
```python
import logging
# Module-level logger
logger = logging.getLogger(__name__)
# GOOD: Appropriate log levels
logger.debug("Processing document: %s", doc_id)
logger.info("Document processed successfully: %s", doc_id)
logger.warning("Low confidence score: %.2f", confidence)
logger.error("Failed to process document: %s", error)
# GOOD: Structured logging with extra data
logger.info(
"Inference complete",
extra={
"document_id": doc_id,
"field_count": len(fields),
"processing_time_ms": elapsed_ms
}
)
# BAD: Using print()
print(f"Processing {doc_id}") # Never in production!
```
**Remember**: Code quality is not negotiable. Clear, maintainable Python code with proper type hints enables confident development and refactoring.

View File

@@ -0,0 +1,80 @@
---
name: continuous-learning
description: Automatically extract reusable patterns from Claude Code sessions and save them as learned skills for future use.
---
# Continuous Learning Skill
Automatically evaluates Claude Code sessions on end to extract reusable patterns that can be saved as learned skills.
## How It Works
This skill runs as a **Stop hook** at the end of each session:
1. **Session Evaluation**: Checks if session has enough messages (default: 10+)
2. **Pattern Detection**: Identifies extractable patterns from the session
3. **Skill Extraction**: Saves useful patterns to `~/.claude/skills/learned/`
## Configuration
Edit `config.json` to customize:
```json
{
"min_session_length": 10,
"extraction_threshold": "medium",
"auto_approve": false,
"learned_skills_path": "~/.claude/skills/learned/",
"patterns_to_detect": [
"error_resolution",
"user_corrections",
"workarounds",
"debugging_techniques",
"project_specific"
],
"ignore_patterns": [
"simple_typos",
"one_time_fixes",
"external_api_issues"
]
}
```
## Pattern Types
| Pattern | Description |
|---------|-------------|
| `error_resolution` | How specific errors were resolved |
| `user_corrections` | Patterns from user corrections |
| `workarounds` | Solutions to framework/library quirks |
| `debugging_techniques` | Effective debugging approaches |
| `project_specific` | Project-specific conventions |
## Hook Setup
Add to your `~/.claude/settings.json`:
```json
{
"hooks": {
"Stop": [{
"matcher": "*",
"hooks": [{
"type": "command",
"command": "~/.claude/skills/continuous-learning/evaluate-session.sh"
}]
}]
}
}
```
## Why Stop Hook?
- **Lightweight**: Runs once at session end
- **Non-blocking**: Doesn't add latency to every message
- **Complete context**: Has access to full session transcript
## Related
- [The Longform Guide](https://x.com/affaanmustafa/status/2014040193557471352) - Section on continuous learning
- `/learn` command - Manual pattern extraction mid-session

View File

@@ -0,0 +1,18 @@
{
"min_session_length": 10,
"extraction_threshold": "medium",
"auto_approve": false,
"learned_skills_path": "~/.claude/skills/learned/",
"patterns_to_detect": [
"error_resolution",
"user_corrections",
"workarounds",
"debugging_techniques",
"project_specific"
],
"ignore_patterns": [
"simple_typos",
"one_time_fixes",
"external_api_issues"
]
}

View File

@@ -0,0 +1,60 @@
#!/bin/bash
# Continuous Learning - Session Evaluator
# Runs on Stop hook to extract reusable patterns from Claude Code sessions
#
# Why Stop hook instead of UserPromptSubmit:
# - Stop runs once at session end (lightweight)
# - UserPromptSubmit runs every message (heavy, adds latency)
#
# Hook config (in ~/.claude/settings.json):
# {
# "hooks": {
# "Stop": [{
# "matcher": "*",
# "hooks": [{
# "type": "command",
# "command": "~/.claude/skills/continuous-learning/evaluate-session.sh"
# }]
# }]
# }
# }
#
# Patterns to detect: error_resolution, debugging_techniques, workarounds, project_specific
# Patterns to ignore: simple_typos, one_time_fixes, external_api_issues
# Extracted skills saved to: ~/.claude/skills/learned/
set -e
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
CONFIG_FILE="$SCRIPT_DIR/config.json"
LEARNED_SKILLS_PATH="${HOME}/.claude/skills/learned"
MIN_SESSION_LENGTH=10
# Load config if exists
if [ -f "$CONFIG_FILE" ]; then
MIN_SESSION_LENGTH=$(jq -r '.min_session_length // 10' "$CONFIG_FILE")
LEARNED_SKILLS_PATH=$(jq -r '.learned_skills_path // "~/.claude/skills/learned/"' "$CONFIG_FILE" | sed "s|~|$HOME|")
fi
# Ensure learned skills directory exists
mkdir -p "$LEARNED_SKILLS_PATH"
# Get transcript path from environment (set by Claude Code)
transcript_path="${CLAUDE_TRANSCRIPT_PATH:-}"
if [ -z "$transcript_path" ] || [ ! -f "$transcript_path" ]; then
exit 0
fi
# Count messages in session
message_count=$(grep -c '"type":"user"' "$transcript_path" 2>/dev/null || echo "0")
# Skip short sessions
if [ "$message_count" -lt "$MIN_SESSION_LENGTH" ]; then
echo "[ContinuousLearning] Session too short ($message_count messages), skipping" >&2
exit 0
fi
# Signal to Claude that session should be evaluated for extractable patterns
echo "[ContinuousLearning] Session has $message_count messages - evaluate for extractable patterns" >&2
echo "[ContinuousLearning] Save learned skills to: $LEARNED_SKILLS_PATH" >&2

View File

@@ -1,245 +0,0 @@
---
name: dev-builder
description: 根据 Product-Spec.md 初始化项目、安装依赖、实现代码。与 product-spec-builder 配套使用,帮助用户将需求文档转化为可运行的代码项目。
---
[角色]
你是一位经验丰富的全栈开发工程师。
你能够根据产品需求文档快速搭建项目,选择合适的技术栈,编写高质量的代码。你注重代码结构清晰、可维护性强。
[任务]
读取 Product-Spec.md完成以下工作
1. 分析需求,确定项目类型和技术栈
2. 初始化项目,创建目录结构
3. 安装必要依赖,配置开发环境
4. 实现代码UI、功能、AI 集成)
最终交付可运行的项目代码。
[总体规则]
- 必须先读取 Product-Spec.md不存在则提示用户先完成需求收集
- 每个阶段完成后输出进度反馈
- 如有原型图,开发时参考原型图的视觉设计
- 代码要简洁、可读、可维护
- 优先使用简单方案,不过度设计
- 只改与当前任务相关的文件,禁止「顺手升级依赖」「全局格式化」「无关重命名」
- 始终使用中文与用户交流
[项目类型判断]
根据 Product Spec 的 UI 布局和技术说明判断:
- 有 UI + 纯前端/无需服务器 → 纯前端 Web 应用
- 有 UI + 需要后端/数据库/API → 全栈 Web 应用
- 无 UI + 命令行操作 → CLI 工具
- 只是 API 服务 → 后端服务
[技术栈选择]
| 项目类型 | 推荐技术栈 |
|---------|-----------|
| 纯前端 Web 应用 | React + Vite + TypeScript + Tailwind |
| 全栈 Web 应用 | Next.js + TypeScript + Tailwind |
| CLI 工具 | Node.js + TypeScript + Commander |
| 后端服务 | Express + TypeScript |
| AI/ML 应用 | Python + FastAPI + PyTorch/TensorFlow |
| 数据处理工具 | Python + Pandas + NumPy |
**选择原则**
- Product Spec 技术说明有指定 → 用指定的
- 没指定 → 用推荐方案
- 有疑问 → 询问用户
[AI 研发方向]
**适用场景**
- 机器学习模型训练与推理
- 计算机视觉目标检测、OCR、图像分类
- 自然语言处理(文本分类、命名实体识别、对话系统)
- 大语言模型应用RAG、Agent、Prompt Engineering
- 数据分析与可视化
**技术栈推荐**
| 方向 | 推荐技术栈 |
|-----|-----------|
| 深度学习 | PyTorch + Lightning + Weights & Biases |
| 目标检测 | Ultralytics YOLO + OpenCV |
| OCR | PaddleOCR / EasyOCR / Tesseract |
| NLP | Transformers + spaCy |
| LLM 应用 | LangChain / LlamaIndex + OpenAI API |
| 数据处理 | Pandas + Polars + DuckDB |
| 模型部署 | FastAPI + Docker + ONNX Runtime |
**项目结构AI/ML 项目)**
```
project/
├── src/ # 源代码
│ ├── data/ # 数据加载与预处理
│ ├── models/ # 模型定义
│ ├── training/ # 训练逻辑
│ ├── inference/ # 推理逻辑
│ └── utils/ # 工具函数
├── configs/ # 配置文件YAML
├── data/ # 数据目录
│ ├── raw/ # 原始数据(不修改)
│ └── processed/ # 处理后数据
├── models/ # 训练好的模型权重
├── notebooks/ # 实验 Notebook
├── tests/ # 测试代码
└── scripts/ # 运行脚本
```
**AI 研发规范**
- **可复现性**固定随机种子random、numpy、torch记录实验配置
- **数据管理**:原始数据不可变,处理数据版本化
- **实验追踪**:使用 MLflow/W&B 记录指标、参数、产物
- **配置驱动**:所有超参数放 YAML 配置,禁止硬编码
- **类型安全**:使用 Pydantic 定义数据结构
- **日志规范**:使用 logging 模块,不用 print
**模型训练检查项**
- ✅ 数据集划分train/val/test比例合理
- ✅ 早停机制Early Stopping防止过拟合
- ✅ 学习率调度器配置
- ✅ 模型检查点保存策略
- ✅ 验证集指标监控
- ✅ GPU 内存管理(混合精度训练)
**部署注意事项**
- 模型导出为 ONNX 格式提升推理速度
- API 接口使用异步处理提升并发
- 大文件使用流式传输
- 配置健康检查端点
- 日志和指标监控
[初始化提醒]
**项目名称规范**
- 只能用小写字母、数字、短横线(如 my-app
- 不能有空格、&、# 等特殊字符
**npm 报错时**:可尝试 pnpm 或 yarn
[依赖选择]
**原则**:只装需要的,不装「可能用到」的
[环境变量配置]
**⚠️ 安全警告**
- Vite 纯前端:`VITE_` 前缀变量**会暴露给浏览器**,不能存放 API Key
- Next.js不加 `NEXT_PUBLIC_` 前缀的变量只在服务端可用(安全)
**涉及 AI API 调用时**
- 推荐用 Next.jsAPI Key 只在服务端使用,安全)
- 备选:创建独立后端代理请求
- 仅限开发/演示:使用 VITE_ 前缀(必须提醒用户安全风险)
**文件规范**
- 创建 `.env.example` 作为模板(提交到 Git
- 实际值放 `.env.local`(不提交,确保 .gitignore 包含)
[工作流程]
[启动阶段]
目的:检查前置条件,读取项目文档
第一步:检测 Product Spec
检测 Product-Spec.md 是否存在
不存在 → 提示:「未找到 Product-Spec.md请先使用 /prd 完成需求收集。」,终止流程
存在 → 继续
第二步:读取项目文档
加载 Product-Spec.md
提取产品概述、功能需求、UI 布局、技术说明、AI 能力需求
第三步:检查原型图
检查 UI-Prompts.md 是否存在
存在 → 询问:「我看到你已经生成了原型图提示词,如果有生成的原型图图片,可以发给我参考。」
不存在 → 询问:「是否有原型图或设计稿可以参考?有的话可以发给我。」
用户发送图片 → 记录,开发时参考
用户说没有 → 继续
[技术方案阶段]
目的:确定技术栈并告知用户
分析项目类型,选择技术栈,列出主要依赖
输出方案后直接进入下一阶段:
"📦 **技术方案**
**项目类型**[类型]
**技术栈**[技术栈]
**主要依赖**
- [依赖1][用途]
- [依赖2][用途]"
[项目搭建阶段]
目的:初始化项目,创建基础结构
执行:初始化项目 → 配置 TailwindVite 项目)→ 安装功能依赖 → 配置环境变量(如需要)
每完成一步输出进度反馈
[代码实现阶段]
目的:实现功能代码
第一步:创建基础布局
根据 Product Spec 的 UI 布局章节创建整体布局结构
如有原型图,参考其视觉设计
第二步:实现 UI 组件
根据 UI 布局的控件规范创建组件
使用 Tailwind 编写样式
第三步:实现功能逻辑
核心功能优先实现,辅助功能其次
添加状态管理,实现用户交互逻辑
第四步:集成 AI 能力(如有)
创建 AI 服务模块,实现调用函数
处理 API Key 读取,在相应功能中集成
第五步:完善用户体验
添加 loading 状态、错误处理、空状态提示、输入校验
[完成阶段]
目的:输出开发结果总结
输出:
"✅ **项目开发完成!**
**技术栈**[技术栈]
**项目结构**
```
[实际目录结构]
```
**已实现功能**
- ✅ [功能1]
- ✅ [功能2]
- ...
**AI 能力集成**
- [已集成的 AI 能力,或「无」]
**环境变量**
- [需要配置的环境变量,或「无需配置」]"
[质量门槛]
每个功能点至少满足:
**必须**
- ✅ 主路径可用Happy Path 能跑通)
- ✅ 异常路径清晰(错误提示、重试/回退)
- ✅ loading 状态(涉及异步操作时)
- ✅ 空状态处理(无数据时的提示)
- ✅ 基础输入校验(必填、格式)
- ✅ 敏感信息不写入代码API Key 走环境变量)
**建议**
- 基础可访问性(可点击、可键盘操作)
- 响应式适配(如需支持移动端)
[代码规范]
- 单个文件不超过 300 行,超过则拆分
- 优先使用函数组件 + Hooks
- 样式优先用 Tailwind
[初始化]
执行 [启动阶段]

View File

@@ -0,0 +1,221 @@
# Eval Harness Skill
A formal evaluation framework for Claude Code sessions, implementing eval-driven development (EDD) principles.
## Philosophy
Eval-Driven Development treats evals as the "unit tests of AI development":
- Define expected behavior BEFORE implementation
- Run evals continuously during development
- Track regressions with each change
- Use pass@k metrics for reliability measurement
## Eval Types
### Capability Evals
Test if Claude can do something it couldn't before:
```markdown
[CAPABILITY EVAL: feature-name]
Task: Description of what Claude should accomplish
Success Criteria:
- [ ] Criterion 1
- [ ] Criterion 2
- [ ] Criterion 3
Expected Output: Description of expected result
```
### Regression Evals
Ensure changes don't break existing functionality:
```markdown
[REGRESSION EVAL: feature-name]
Baseline: SHA or checkpoint name
Tests:
- existing-test-1: PASS/FAIL
- existing-test-2: PASS/FAIL
- existing-test-3: PASS/FAIL
Result: X/Y passed (previously Y/Y)
```
## Grader Types
### 1. Code-Based Grader
Deterministic checks using code:
```bash
# Check if file contains expected pattern
grep -q "export function handleAuth" src/auth.ts && echo "PASS" || echo "FAIL"
# Check if tests pass
npm test -- --testPathPattern="auth" && echo "PASS" || echo "FAIL"
# Check if build succeeds
npm run build && echo "PASS" || echo "FAIL"
```
### 2. Model-Based Grader
Use Claude to evaluate open-ended outputs:
```markdown
[MODEL GRADER PROMPT]
Evaluate the following code change:
1. Does it solve the stated problem?
2. Is it well-structured?
3. Are edge cases handled?
4. Is error handling appropriate?
Score: 1-5 (1=poor, 5=excellent)
Reasoning: [explanation]
```
### 3. Human Grader
Flag for manual review:
```markdown
[HUMAN REVIEW REQUIRED]
Change: Description of what changed
Reason: Why human review is needed
Risk Level: LOW/MEDIUM/HIGH
```
## Metrics
### pass@k
"At least one success in k attempts"
- pass@1: First attempt success rate
- pass@3: Success within 3 attempts
- Typical target: pass@3 > 90%
### pass^k
"All k trials succeed"
- Higher bar for reliability
- pass^3: 3 consecutive successes
- Use for critical paths
## Eval Workflow
### 1. Define (Before Coding)
```markdown
## EVAL DEFINITION: feature-xyz
### Capability Evals
1. Can create new user account
2. Can validate email format
3. Can hash password securely
### Regression Evals
1. Existing login still works
2. Session management unchanged
3. Logout flow intact
### Success Metrics
- pass@3 > 90% for capability evals
- pass^3 = 100% for regression evals
```
### 2. Implement
Write code to pass the defined evals.
### 3. Evaluate
```bash
# Run capability evals
[Run each capability eval, record PASS/FAIL]
# Run regression evals
npm test -- --testPathPattern="existing"
# Generate report
```
### 4. Report
```markdown
EVAL REPORT: feature-xyz
========================
Capability Evals:
create-user: PASS (pass@1)
validate-email: PASS (pass@2)
hash-password: PASS (pass@1)
Overall: 3/3 passed
Regression Evals:
login-flow: PASS
session-mgmt: PASS
logout-flow: PASS
Overall: 3/3 passed
Metrics:
pass@1: 67% (2/3)
pass@3: 100% (3/3)
Status: READY FOR REVIEW
```
## Integration Patterns
### Pre-Implementation
```
/eval define feature-name
```
Creates eval definition file at `.claude/evals/feature-name.md`
### During Implementation
```
/eval check feature-name
```
Runs current evals and reports status
### Post-Implementation
```
/eval report feature-name
```
Generates full eval report
## Eval Storage
Store evals in project:
```
.claude/
evals/
feature-xyz.md # Eval definition
feature-xyz.log # Eval run history
baseline.json # Regression baselines
```
## Best Practices
1. **Define evals BEFORE coding** - Forces clear thinking about success criteria
2. **Run evals frequently** - Catch regressions early
3. **Track pass@k over time** - Monitor reliability trends
4. **Use code graders when possible** - Deterministic > probabilistic
5. **Human review for security** - Never fully automate security checks
6. **Keep evals fast** - Slow evals don't get run
7. **Version evals with code** - Evals are first-class artifacts
## Example: Adding Authentication
```markdown
## EVAL: add-authentication
### Phase 1: Define (10 min)
Capability Evals:
- [ ] User can register with email/password
- [ ] User can login with valid credentials
- [ ] Invalid credentials rejected with proper error
- [ ] Sessions persist across page reloads
- [ ] Logout clears session
Regression Evals:
- [ ] Public routes still accessible
- [ ] API responses unchanged
- [ ] Database schema compatible
### Phase 2: Implement (varies)
[Write code]
### Phase 3: Evaluate
Run: /eval check add-authentication
### Phase 4: Report
EVAL REPORT: add-authentication
==============================
Capability: 5/5 passed (pass@3: 100%)
Regression: 3/3 passed (pass^3: 100%)
Status: SHIP IT
```

View File

@@ -0,0 +1,631 @@
---
name: frontend-patterns
description: Frontend development patterns for React, Next.js, state management, performance optimization, and UI best practices.
---
# Frontend Development Patterns
Modern frontend patterns for React, Next.js, and performant user interfaces.
## Component Patterns
### Composition Over Inheritance
```typescript
// ✅ GOOD: Component composition
interface CardProps {
children: React.ReactNode
variant?: 'default' | 'outlined'
}
export function Card({ children, variant = 'default' }: CardProps) {
return <div className={`card card-${variant}`}>{children}</div>
}
export function CardHeader({ children }: { children: React.ReactNode }) {
return <div className="card-header">{children}</div>
}
export function CardBody({ children }: { children: React.ReactNode }) {
return <div className="card-body">{children}</div>
}
// Usage
<Card>
<CardHeader>Title</CardHeader>
<CardBody>Content</CardBody>
</Card>
```
### Compound Components
```typescript
interface TabsContextValue {
activeTab: string
setActiveTab: (tab: string) => void
}
const TabsContext = createContext<TabsContextValue | undefined>(undefined)
export function Tabs({ children, defaultTab }: {
children: React.ReactNode
defaultTab: string
}) {
const [activeTab, setActiveTab] = useState(defaultTab)
return (
<TabsContext.Provider value={{ activeTab, setActiveTab }}>
{children}
</TabsContext.Provider>
)
}
export function TabList({ children }: { children: React.ReactNode }) {
return <div className="tab-list">{children}</div>
}
export function Tab({ id, children }: { id: string, children: React.ReactNode }) {
const context = useContext(TabsContext)
if (!context) throw new Error('Tab must be used within Tabs')
return (
<button
className={context.activeTab === id ? 'active' : ''}
onClick={() => context.setActiveTab(id)}
>
{children}
</button>
)
}
// Usage
<Tabs defaultTab="overview">
<TabList>
<Tab id="overview">Overview</Tab>
<Tab id="details">Details</Tab>
</TabList>
</Tabs>
```
### Render Props Pattern
```typescript
interface DataLoaderProps<T> {
url: string
children: (data: T | null, loading: boolean, error: Error | null) => React.ReactNode
}
export function DataLoader<T>({ url, children }: DataLoaderProps<T>) {
const [data, setData] = useState<T | null>(null)
const [loading, setLoading] = useState(true)
const [error, setError] = useState<Error | null>(null)
useEffect(() => {
fetch(url)
.then(res => res.json())
.then(setData)
.catch(setError)
.finally(() => setLoading(false))
}, [url])
return <>{children(data, loading, error)}</>
}
// Usage
<DataLoader<Market[]> url="/api/markets">
{(markets, loading, error) => {
if (loading) return <Spinner />
if (error) return <Error error={error} />
return <MarketList markets={markets!} />
}}
</DataLoader>
```
## Custom Hooks Patterns
### State Management Hook
```typescript
export function useToggle(initialValue = false): [boolean, () => void] {
const [value, setValue] = useState(initialValue)
const toggle = useCallback(() => {
setValue(v => !v)
}, [])
return [value, toggle]
}
// Usage
const [isOpen, toggleOpen] = useToggle()
```
### Async Data Fetching Hook
```typescript
interface UseQueryOptions<T> {
onSuccess?: (data: T) => void
onError?: (error: Error) => void
enabled?: boolean
}
export function useQuery<T>(
key: string,
fetcher: () => Promise<T>,
options?: UseQueryOptions<T>
) {
const [data, setData] = useState<T | null>(null)
const [error, setError] = useState<Error | null>(null)
const [loading, setLoading] = useState(false)
const refetch = useCallback(async () => {
setLoading(true)
setError(null)
try {
const result = await fetcher()
setData(result)
options?.onSuccess?.(result)
} catch (err) {
const error = err as Error
setError(error)
options?.onError?.(error)
} finally {
setLoading(false)
}
}, [fetcher, options])
useEffect(() => {
if (options?.enabled !== false) {
refetch()
}
}, [key, refetch, options?.enabled])
return { data, error, loading, refetch }
}
// Usage
const { data: markets, loading, error, refetch } = useQuery(
'markets',
() => fetch('/api/markets').then(r => r.json()),
{
onSuccess: data => console.log('Fetched', data.length, 'markets'),
onError: err => console.error('Failed:', err)
}
)
```
### Debounce Hook
```typescript
export function useDebounce<T>(value: T, delay: number): T {
const [debouncedValue, setDebouncedValue] = useState<T>(value)
useEffect(() => {
const handler = setTimeout(() => {
setDebouncedValue(value)
}, delay)
return () => clearTimeout(handler)
}, [value, delay])
return debouncedValue
}
// Usage
const [searchQuery, setSearchQuery] = useState('')
const debouncedQuery = useDebounce(searchQuery, 500)
useEffect(() => {
if (debouncedQuery) {
performSearch(debouncedQuery)
}
}, [debouncedQuery])
```
## State Management Patterns
### Context + Reducer Pattern
```typescript
interface State {
markets: Market[]
selectedMarket: Market | null
loading: boolean
}
type Action =
| { type: 'SET_MARKETS'; payload: Market[] }
| { type: 'SELECT_MARKET'; payload: Market }
| { type: 'SET_LOADING'; payload: boolean }
function reducer(state: State, action: Action): State {
switch (action.type) {
case 'SET_MARKETS':
return { ...state, markets: action.payload }
case 'SELECT_MARKET':
return { ...state, selectedMarket: action.payload }
case 'SET_LOADING':
return { ...state, loading: action.payload }
default:
return state
}
}
const MarketContext = createContext<{
state: State
dispatch: Dispatch<Action>
} | undefined>(undefined)
export function MarketProvider({ children }: { children: React.ReactNode }) {
const [state, dispatch] = useReducer(reducer, {
markets: [],
selectedMarket: null,
loading: false
})
return (
<MarketContext.Provider value={{ state, dispatch }}>
{children}
</MarketContext.Provider>
)
}
export function useMarkets() {
const context = useContext(MarketContext)
if (!context) throw new Error('useMarkets must be used within MarketProvider')
return context
}
```
## Performance Optimization
### Memoization
```typescript
// ✅ useMemo for expensive computations
const sortedMarkets = useMemo(() => {
return markets.sort((a, b) => b.volume - a.volume)
}, [markets])
// ✅ useCallback for functions passed to children
const handleSearch = useCallback((query: string) => {
setSearchQuery(query)
}, [])
// ✅ React.memo for pure components
export const MarketCard = React.memo<MarketCardProps>(({ market }) => {
return (
<div className="market-card">
<h3>{market.name}</h3>
<p>{market.description}</p>
</div>
)
})
```
### Code Splitting & Lazy Loading
```typescript
import { lazy, Suspense } from 'react'
// ✅ Lazy load heavy components
const HeavyChart = lazy(() => import('./HeavyChart'))
const ThreeJsBackground = lazy(() => import('./ThreeJsBackground'))
export function Dashboard() {
return (
<div>
<Suspense fallback={<ChartSkeleton />}>
<HeavyChart data={data} />
</Suspense>
<Suspense fallback={null}>
<ThreeJsBackground />
</Suspense>
</div>
)
}
```
### Virtualization for Long Lists
```typescript
import { useVirtualizer } from '@tanstack/react-virtual'
export function VirtualMarketList({ markets }: { markets: Market[] }) {
const parentRef = useRef<HTMLDivElement>(null)
const virtualizer = useVirtualizer({
count: markets.length,
getScrollElement: () => parentRef.current,
estimateSize: () => 100, // Estimated row height
overscan: 5 // Extra items to render
})
return (
<div ref={parentRef} style={{ height: '600px', overflow: 'auto' }}>
<div
style={{
height: `${virtualizer.getTotalSize()}px`,
position: 'relative'
}}
>
{virtualizer.getVirtualItems().map(virtualRow => (
<div
key={virtualRow.index}
style={{
position: 'absolute',
top: 0,
left: 0,
width: '100%',
height: `${virtualRow.size}px`,
transform: `translateY(${virtualRow.start}px)`
}}
>
<MarketCard market={markets[virtualRow.index]} />
</div>
))}
</div>
</div>
)
}
```
## Form Handling Patterns
### Controlled Form with Validation
```typescript
interface FormData {
name: string
description: string
endDate: string
}
interface FormErrors {
name?: string
description?: string
endDate?: string
}
export function CreateMarketForm() {
const [formData, setFormData] = useState<FormData>({
name: '',
description: '',
endDate: ''
})
const [errors, setErrors] = useState<FormErrors>({})
const validate = (): boolean => {
const newErrors: FormErrors = {}
if (!formData.name.trim()) {
newErrors.name = 'Name is required'
} else if (formData.name.length > 200) {
newErrors.name = 'Name must be under 200 characters'
}
if (!formData.description.trim()) {
newErrors.description = 'Description is required'
}
if (!formData.endDate) {
newErrors.endDate = 'End date is required'
}
setErrors(newErrors)
return Object.keys(newErrors).length === 0
}
const handleSubmit = async (e: React.FormEvent) => {
e.preventDefault()
if (!validate()) return
try {
await createMarket(formData)
// Success handling
} catch (error) {
// Error handling
}
}
return (
<form onSubmit={handleSubmit}>
<input
value={formData.name}
onChange={e => setFormData(prev => ({ ...prev, name: e.target.value }))}
placeholder="Market name"
/>
{errors.name && <span className="error">{errors.name}</span>}
{/* Other fields */}
<button type="submit">Create Market</button>
</form>
)
}
```
## Error Boundary Pattern
```typescript
interface ErrorBoundaryState {
hasError: boolean
error: Error | null
}
export class ErrorBoundary extends React.Component<
{ children: React.ReactNode },
ErrorBoundaryState
> {
state: ErrorBoundaryState = {
hasError: false,
error: null
}
static getDerivedStateFromError(error: Error): ErrorBoundaryState {
return { hasError: true, error }
}
componentDidCatch(error: Error, errorInfo: React.ErrorInfo) {
console.error('Error boundary caught:', error, errorInfo)
}
render() {
if (this.state.hasError) {
return (
<div className="error-fallback">
<h2>Something went wrong</h2>
<p>{this.state.error?.message}</p>
<button onClick={() => this.setState({ hasError: false })}>
Try again
</button>
</div>
)
}
return this.props.children
}
}
// Usage
<ErrorBoundary>
<App />
</ErrorBoundary>
```
## Animation Patterns
### Framer Motion Animations
```typescript
import { motion, AnimatePresence } from 'framer-motion'
// ✅ List animations
export function AnimatedMarketList({ markets }: { markets: Market[] }) {
return (
<AnimatePresence>
{markets.map(market => (
<motion.div
key={market.id}
initial={{ opacity: 0, y: 20 }}
animate={{ opacity: 1, y: 0 }}
exit={{ opacity: 0, y: -20 }}
transition={{ duration: 0.3 }}
>
<MarketCard market={market} />
</motion.div>
))}
</AnimatePresence>
)
}
// ✅ Modal animations
export function Modal({ isOpen, onClose, children }: ModalProps) {
return (
<AnimatePresence>
{isOpen && (
<>
<motion.div
className="modal-overlay"
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
exit={{ opacity: 0 }}
onClick={onClose}
/>
<motion.div
className="modal-content"
initial={{ opacity: 0, scale: 0.9, y: 20 }}
animate={{ opacity: 1, scale: 1, y: 0 }}
exit={{ opacity: 0, scale: 0.9, y: 20 }}
>
{children}
</motion.div>
</>
)}
</AnimatePresence>
)
}
```
## Accessibility Patterns
### Keyboard Navigation
```typescript
export function Dropdown({ options, onSelect }: DropdownProps) {
const [isOpen, setIsOpen] = useState(false)
const [activeIndex, setActiveIndex] = useState(0)
const handleKeyDown = (e: React.KeyboardEvent) => {
switch (e.key) {
case 'ArrowDown':
e.preventDefault()
setActiveIndex(i => Math.min(i + 1, options.length - 1))
break
case 'ArrowUp':
e.preventDefault()
setActiveIndex(i => Math.max(i - 1, 0))
break
case 'Enter':
e.preventDefault()
onSelect(options[activeIndex])
setIsOpen(false)
break
case 'Escape':
setIsOpen(false)
break
}
}
return (
<div
role="combobox"
aria-expanded={isOpen}
aria-haspopup="listbox"
onKeyDown={handleKeyDown}
>
{/* Dropdown implementation */}
</div>
)
}
```
### Focus Management
```typescript
export function Modal({ isOpen, onClose, children }: ModalProps) {
const modalRef = useRef<HTMLDivElement>(null)
const previousFocusRef = useRef<HTMLElement | null>(null)
useEffect(() => {
if (isOpen) {
// Save currently focused element
previousFocusRef.current = document.activeElement as HTMLElement
// Focus modal
modalRef.current?.focus()
} else {
// Restore focus when closing
previousFocusRef.current?.focus()
}
}, [isOpen])
return isOpen ? (
<div
ref={modalRef}
role="dialog"
aria-modal="true"
tabIndex={-1}
onKeyDown={e => e.key === 'Escape' && onClose()}
>
{children}
</div>
) : null
}
```
**Remember**: Modern frontend patterns enable maintainable, performant user interfaces. Choose patterns that fit your project complexity.

View File

@@ -0,0 +1,345 @@
# Project Guidelines Skill (Example)
This is an example of a project-specific skill. Use this as a template for your own projects.
Based on a real production application: [Zenith](https://zenith.chat) - AI-powered customer discovery platform.
---
## When to Use
Reference this skill when working on the specific project it's designed for. Project skills contain:
- Architecture overview
- File structure
- Code patterns
- Testing requirements
- Deployment workflow
---
## Architecture Overview
**Tech Stack:**
- **Frontend**: Next.js 15 (App Router), TypeScript, React
- **Backend**: FastAPI (Python), Pydantic models
- **Database**: Supabase (PostgreSQL)
- **AI**: Claude API with tool calling and structured output
- **Deployment**: Google Cloud Run
- **Testing**: Playwright (E2E), pytest (backend), React Testing Library
**Services:**
```
┌─────────────────────────────────────────────────────────────┐
│ Frontend │
│ Next.js 15 + TypeScript + TailwindCSS │
│ Deployed: Vercel / Cloud Run │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Backend │
│ FastAPI + Python 3.11 + Pydantic │
│ Deployed: Cloud Run │
└─────────────────────────────────────────────────────────────┘
┌───────────────┼───────────────┐
▼ ▼ ▼
┌──────────┐ ┌──────────┐ ┌──────────┐
│ Supabase │ │ Claude │ │ Redis │
│ Database │ │ API │ │ Cache │
└──────────┘ └──────────┘ └──────────┘
```
---
## File Structure
```
project/
├── frontend/
│ └── src/
│ ├── app/ # Next.js app router pages
│ │ ├── api/ # API routes
│ │ ├── (auth)/ # Auth-protected routes
│ │ └── workspace/ # Main app workspace
│ ├── components/ # React components
│ │ ├── ui/ # Base UI components
│ │ ├── forms/ # Form components
│ │ └── layouts/ # Layout components
│ ├── hooks/ # Custom React hooks
│ ├── lib/ # Utilities
│ ├── types/ # TypeScript definitions
│ └── config/ # Configuration
├── backend/
│ ├── routers/ # FastAPI route handlers
│ ├── models.py # Pydantic models
│ ├── main.py # FastAPI app entry
│ ├── auth_system.py # Authentication
│ ├── database.py # Database operations
│ ├── services/ # Business logic
│ └── tests/ # pytest tests
├── deploy/ # Deployment configs
├── docs/ # Documentation
└── scripts/ # Utility scripts
```
---
## Code Patterns
### API Response Format (FastAPI)
```python
from pydantic import BaseModel
from typing import Generic, TypeVar, Optional
T = TypeVar('T')
class ApiResponse(BaseModel, Generic[T]):
success: bool
data: Optional[T] = None
error: Optional[str] = None
@classmethod
def ok(cls, data: T) -> "ApiResponse[T]":
return cls(success=True, data=data)
@classmethod
def fail(cls, error: str) -> "ApiResponse[T]":
return cls(success=False, error=error)
```
### Frontend API Calls (TypeScript)
```typescript
interface ApiResponse<T> {
success: boolean
data?: T
error?: string
}
async function fetchApi<T>(
endpoint: string,
options?: RequestInit
): Promise<ApiResponse<T>> {
try {
const response = await fetch(`/api${endpoint}`, {
...options,
headers: {
'Content-Type': 'application/json',
...options?.headers,
},
})
if (!response.ok) {
return { success: false, error: `HTTP ${response.status}` }
}
return await response.json()
} catch (error) {
return { success: false, error: String(error) }
}
}
```
### Claude AI Integration (Structured Output)
```python
from anthropic import Anthropic
from pydantic import BaseModel
class AnalysisResult(BaseModel):
summary: str
key_points: list[str]
confidence: float
async def analyze_with_claude(content: str) -> AnalysisResult:
client = Anthropic()
response = client.messages.create(
model="claude-sonnet-4-5-20250514",
max_tokens=1024,
messages=[{"role": "user", "content": content}],
tools=[{
"name": "provide_analysis",
"description": "Provide structured analysis",
"input_schema": AnalysisResult.model_json_schema()
}],
tool_choice={"type": "tool", "name": "provide_analysis"}
)
# Extract tool use result
tool_use = next(
block for block in response.content
if block.type == "tool_use"
)
return AnalysisResult(**tool_use.input)
```
### Custom Hooks (React)
```typescript
import { useState, useCallback } from 'react'
interface UseApiState<T> {
data: T | null
loading: boolean
error: string | null
}
export function useApi<T>(
fetchFn: () => Promise<ApiResponse<T>>
) {
const [state, setState] = useState<UseApiState<T>>({
data: null,
loading: false,
error: null,
})
const execute = useCallback(async () => {
setState(prev => ({ ...prev, loading: true, error: null }))
const result = await fetchFn()
if (result.success) {
setState({ data: result.data!, loading: false, error: null })
} else {
setState({ data: null, loading: false, error: result.error! })
}
}, [fetchFn])
return { ...state, execute }
}
```
---
## Testing Requirements
### Backend (pytest)
```bash
# Run all tests
poetry run pytest tests/
# Run with coverage
poetry run pytest tests/ --cov=. --cov-report=html
# Run specific test file
poetry run pytest tests/test_auth.py -v
```
**Test structure:**
```python
import pytest
from httpx import AsyncClient
from main import app
@pytest.fixture
async def client():
async with AsyncClient(app=app, base_url="http://test") as ac:
yield ac
@pytest.mark.asyncio
async def test_health_check(client: AsyncClient):
response = await client.get("/health")
assert response.status_code == 200
assert response.json()["status"] == "healthy"
```
### Frontend (React Testing Library)
```bash
# Run tests
npm run test
# Run with coverage
npm run test -- --coverage
# Run E2E tests
npm run test:e2e
```
**Test structure:**
```typescript
import { render, screen, fireEvent } from '@testing-library/react'
import { WorkspacePanel } from './WorkspacePanel'
describe('WorkspacePanel', () => {
it('renders workspace correctly', () => {
render(<WorkspacePanel />)
expect(screen.getByRole('main')).toBeInTheDocument()
})
it('handles session creation', async () => {
render(<WorkspacePanel />)
fireEvent.click(screen.getByText('New Session'))
expect(await screen.findByText('Session created')).toBeInTheDocument()
})
})
```
---
## Deployment Workflow
### Pre-Deployment Checklist
- [ ] All tests passing locally
- [ ] `npm run build` succeeds (frontend)
- [ ] `poetry run pytest` passes (backend)
- [ ] No hardcoded secrets
- [ ] Environment variables documented
- [ ] Database migrations ready
### Deployment Commands
```bash
# Build and deploy frontend
cd frontend && npm run build
gcloud run deploy frontend --source .
# Build and deploy backend
cd backend
gcloud run deploy backend --source .
```
### Environment Variables
```bash
# Frontend (.env.local)
NEXT_PUBLIC_API_URL=https://api.example.com
NEXT_PUBLIC_SUPABASE_URL=https://xxx.supabase.co
NEXT_PUBLIC_SUPABASE_ANON_KEY=eyJ...
# Backend (.env)
DATABASE_URL=postgresql://...
ANTHROPIC_API_KEY=sk-ant-...
SUPABASE_URL=https://xxx.supabase.co
SUPABASE_KEY=eyJ...
```
---
## Critical Rules
1. **No emojis** in code, comments, or documentation
2. **Immutability** - never mutate objects or arrays
3. **TDD** - write tests before implementation
4. **80% coverage** minimum
5. **Many small files** - 200-400 lines typical, 800 max
6. **No console.log** in production code
7. **Proper error handling** with try/catch
8. **Input validation** with Pydantic/Zod
---
## Related Skills
- `coding-standards.md` - General coding best practices
- `backend-patterns.md` - API and database patterns
- `frontend-patterns.md` - React and Next.js patterns
- `tdd-workflow/` - Test-driven development methodology

View File

@@ -0,0 +1,568 @@
---
name: security-review
description: Use this skill when adding authentication, handling user input, working with secrets, creating API endpoints, or implementing payment/sensitive features. Provides comprehensive security checklist and patterns.
---
# Security Review Skill
Security best practices for Python/FastAPI applications handling sensitive invoice data.
## When to Activate
- Implementing authentication or authorization
- Handling user input or file uploads
- Creating new API endpoints
- Working with secrets or credentials
- Processing sensitive invoice data
- Integrating third-party APIs
- Database operations with user data
## Security Checklist
### 1. Secrets Management
#### NEVER Do This
```python
# Hardcoded secrets - CRITICAL VULNERABILITY
api_key = "sk-proj-xxxxx"
db_password = "password123"
```
#### ALWAYS Do This
```python
import os
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
db_password: str
api_key: str
model_path: str = "runs/train/invoice_fields/weights/best.pt"
class Config:
env_file = ".env"
settings = Settings()
# Verify secrets exist
if not settings.db_password:
raise RuntimeError("DB_PASSWORD not configured")
```
#### Verification Steps
- [ ] No hardcoded API keys, tokens, or passwords
- [ ] All secrets in environment variables
- [ ] `.env` in .gitignore
- [ ] No secrets in git history
- [ ] `.env.example` with placeholder values
### 2. Input Validation
#### Always Validate User Input
```python
from pydantic import BaseModel, Field, field_validator
from fastapi import HTTPException
import re
class InvoiceRequest(BaseModel):
invoice_number: str = Field(..., min_length=1, max_length=50)
amount: float = Field(..., gt=0, le=1_000_000)
bankgiro: str | None = None
@field_validator("invoice_number")
@classmethod
def validate_invoice_number(cls, v: str) -> str:
# Whitelist validation - only allow safe characters
if not re.match(r"^[A-Za-z0-9\-_]+$", v):
raise ValueError("Invalid invoice number format")
return v
@field_validator("bankgiro")
@classmethod
def validate_bankgiro(cls, v: str | None) -> str | None:
if v is None:
return None
cleaned = re.sub(r"[^0-9]", "", v)
if not (7 <= len(cleaned) <= 8):
raise ValueError("Bankgiro must be 7-8 digits")
return cleaned
```
#### File Upload Validation
```python
from fastapi import UploadFile, HTTPException
from pathlib import Path
ALLOWED_EXTENSIONS = {".pdf"}
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
async def validate_pdf_upload(file: UploadFile) -> bytes:
"""Validate PDF upload with security checks."""
# Extension check
ext = Path(file.filename or "").suffix.lower()
if ext not in ALLOWED_EXTENSIONS:
raise HTTPException(400, f"Only PDF files allowed, got {ext}")
# Read content
content = await file.read()
# Size check
if len(content) > MAX_FILE_SIZE:
raise HTTPException(400, f"File too large (max {MAX_FILE_SIZE // 1024 // 1024}MB)")
# Magic bytes check (PDF signature)
if not content.startswith(b"%PDF"):
raise HTTPException(400, "Invalid PDF file format")
return content
```
#### Verification Steps
- [ ] All user inputs validated with Pydantic
- [ ] File uploads restricted (size, type, extension, magic bytes)
- [ ] No direct use of user input in queries
- [ ] Whitelist validation (not blacklist)
- [ ] Error messages don't leak sensitive info
### 3. SQL Injection Prevention
#### NEVER Concatenate SQL
```python
# DANGEROUS - SQL Injection vulnerability
query = f"SELECT * FROM documents WHERE id = '{user_input}'"
cur.execute(query)
```
#### ALWAYS Use Parameterized Queries
```python
import psycopg2
# Safe - parameterized query with %s placeholders
cur.execute(
"SELECT * FROM documents WHERE id = %s AND status = %s",
(document_id, status)
)
# Safe - named parameters
cur.execute(
"SELECT * FROM documents WHERE id = %(id)s",
{"id": document_id}
)
# Safe - psycopg2.sql for dynamic identifiers
from psycopg2 import sql
cur.execute(
sql.SQL("SELECT {} FROM {} WHERE id = %s").format(
sql.Identifier("invoice_number"),
sql.Identifier("documents")
),
(document_id,)
)
```
#### Verification Steps
- [ ] All database queries use parameterized queries (%s or %(name)s)
- [ ] No string concatenation or f-strings in SQL
- [ ] psycopg2.sql module used for dynamic identifiers
- [ ] No user input in table/column names
### 4. Path Traversal Prevention
#### NEVER Trust User Paths
```python
# DANGEROUS - Path traversal vulnerability
filename = request.query_params.get("file")
with open(f"/data/{filename}", "r") as f: # Attacker: ../../../etc/passwd
return f.read()
```
#### ALWAYS Validate Paths
```python
from pathlib import Path
ALLOWED_DIR = Path("/data/uploads").resolve()
def get_safe_path(filename: str) -> Path:
"""Get safe file path, preventing path traversal."""
# Remove any path components
safe_name = Path(filename).name
# Validate filename characters
if not re.match(r"^[A-Za-z0-9_\-\.]+$", safe_name):
raise HTTPException(400, "Invalid filename")
# Resolve and verify within allowed directory
full_path = (ALLOWED_DIR / safe_name).resolve()
if not full_path.is_relative_to(ALLOWED_DIR):
raise HTTPException(400, "Invalid file path")
return full_path
```
#### Verification Steps
- [ ] User-provided filenames sanitized
- [ ] Paths resolved and validated against allowed directory
- [ ] No direct concatenation of user input into paths
- [ ] Whitelist characters in filenames
### 5. Authentication & Authorization
#### API Key Validation
```python
from fastapi import Depends, HTTPException, Security
from fastapi.security import APIKeyHeader
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def verify_api_key(api_key: str = Security(api_key_header)) -> str:
if not api_key:
raise HTTPException(401, "API key required")
# Constant-time comparison to prevent timing attacks
import hmac
if not hmac.compare_digest(api_key, settings.api_key):
raise HTTPException(403, "Invalid API key")
return api_key
@router.post("/infer")
async def infer(
file: UploadFile,
api_key: str = Depends(verify_api_key)
):
...
```
#### Role-Based Access Control
```python
from enum import Enum
class UserRole(str, Enum):
USER = "user"
ADMIN = "admin"
def require_role(required_role: UserRole):
async def role_checker(current_user: User = Depends(get_current_user)):
if current_user.role != required_role:
raise HTTPException(403, "Insufficient permissions")
return current_user
return role_checker
@router.delete("/documents/{doc_id}")
async def delete_document(
doc_id: str,
user: User = Depends(require_role(UserRole.ADMIN))
):
...
```
#### Verification Steps
- [ ] API keys validated with constant-time comparison
- [ ] Authorization checks before sensitive operations
- [ ] Role-based access control implemented
- [ ] Session/token validation on protected routes
### 6. Rate Limiting
#### Rate Limiter Implementation
```python
from time import time
from collections import defaultdict
from fastapi import Request, HTTPException
class RateLimiter:
def __init__(self):
self.requests: dict[str, list[float]] = defaultdict(list)
def check_limit(
self,
identifier: str,
max_requests: int,
window_seconds: int
) -> bool:
now = time()
# Clean old requests
self.requests[identifier] = [
t for t in self.requests[identifier]
if now - t < window_seconds
]
# Check limit
if len(self.requests[identifier]) >= max_requests:
return False
self.requests[identifier].append(now)
return True
limiter = RateLimiter()
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
client_ip = request.client.host if request.client else "unknown"
# 100 requests per minute for general endpoints
if not limiter.check_limit(client_ip, max_requests=100, window_seconds=60):
raise HTTPException(429, "Rate limit exceeded. Try again later.")
return await call_next(request)
```
#### Stricter Limits for Expensive Operations
```python
# Inference endpoint: 10 requests per minute
async def check_inference_rate_limit(request: Request):
client_ip = request.client.host if request.client else "unknown"
if not limiter.check_limit(f"infer:{client_ip}", max_requests=10, window_seconds=60):
raise HTTPException(429, "Inference rate limit exceeded")
@router.post("/infer")
async def infer(
file: UploadFile,
_: None = Depends(check_inference_rate_limit)
):
...
```
#### Verification Steps
- [ ] Rate limiting on all API endpoints
- [ ] Stricter limits on expensive operations (inference, OCR)
- [ ] IP-based rate limiting
- [ ] Clear error messages for rate-limited requests
### 7. Sensitive Data Exposure
#### Logging
```python
import logging
logger = logging.getLogger(__name__)
# WRONG: Logging sensitive data
logger.info(f"Processing invoice: {invoice_data}") # May contain sensitive info
logger.error(f"DB error with password: {db_password}")
# CORRECT: Redact sensitive data
logger.info(f"Processing invoice: id={doc_id}")
logger.error(f"DB connection failed to {db_host}:{db_port}")
# CORRECT: Structured logging with safe fields only
logger.info(
"Invoice processed",
extra={
"document_id": doc_id,
"field_count": len(fields),
"processing_time_ms": elapsed_ms
}
)
```
#### Error Messages
```python
# WRONG: Exposing internal details
@app.exception_handler(Exception)
async def error_handler(request: Request, exc: Exception):
return JSONResponse(
status_code=500,
content={
"error": str(exc),
"traceback": traceback.format_exc() # NEVER expose!
}
)
# CORRECT: Generic error messages
@app.exception_handler(Exception)
async def error_handler(request: Request, exc: Exception):
logger.error(f"Unhandled error: {exc}", exc_info=True) # Log internally
return JSONResponse(
status_code=500,
content={"success": False, "error": "An error occurred"}
)
```
#### Verification Steps
- [ ] No passwords, tokens, or secrets in logs
- [ ] Error messages generic for users
- [ ] Detailed errors only in server logs
- [ ] No stack traces exposed to users
- [ ] Invoice data (amounts, account numbers) not logged
### 8. CORS Configuration
```python
from fastapi.middleware.cors import CORSMiddleware
# WRONG: Allow all origins
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # DANGEROUS in production
allow_credentials=True,
)
# CORRECT: Specific origins
ALLOWED_ORIGINS = [
"http://localhost:8000",
"https://your-domain.com",
]
app.add_middleware(
CORSMiddleware,
allow_origins=ALLOWED_ORIGINS,
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
)
```
#### Verification Steps
- [ ] CORS origins explicitly listed
- [ ] No wildcard origins in production
- [ ] Credentials only with specific origins
### 9. Temporary File Security
```python
import tempfile
from pathlib import Path
from contextlib import contextmanager
@contextmanager
def secure_temp_file(suffix: str = ".pdf"):
"""Create secure temporary file that is always cleaned up."""
tmp_path = None
try:
with tempfile.NamedTemporaryFile(
suffix=suffix,
delete=False,
dir="/tmp/invoice-master" # Dedicated temp directory
) as tmp:
tmp_path = Path(tmp.name)
yield tmp_path
finally:
if tmp_path and tmp_path.exists():
tmp_path.unlink()
# Usage
async def process_upload(file: UploadFile):
with secure_temp_file(".pdf") as tmp_path:
content = await validate_pdf_upload(file)
tmp_path.write_bytes(content)
result = pipeline.process(tmp_path)
# File automatically cleaned up
return result
```
#### Verification Steps
- [ ] Temporary files always cleaned up (use context managers)
- [ ] Temp directory has restricted permissions
- [ ] No leftover files after processing errors
### 10. Dependency Security
#### Regular Updates
```bash
# Check for vulnerabilities
pip-audit
# Update dependencies
pip install --upgrade -r requirements.txt
# Check for outdated packages
pip list --outdated
```
#### Lock Files
```bash
# Create requirements lock file
pip freeze > requirements.lock
# Install from lock file for reproducible builds
pip install -r requirements.lock
```
#### Verification Steps
- [ ] Dependencies up to date
- [ ] No known vulnerabilities (pip-audit clean)
- [ ] requirements.txt pinned versions
- [ ] Regular security updates scheduled
## Security Testing
### Automated Security Tests
```python
import pytest
from fastapi.testclient import TestClient
def test_requires_api_key(client: TestClient):
"""Test authentication required."""
response = client.post("/api/v1/infer")
assert response.status_code == 401
def test_invalid_api_key_rejected(client: TestClient):
"""Test invalid API key rejected."""
response = client.post(
"/api/v1/infer",
headers={"X-API-Key": "invalid-key"}
)
assert response.status_code == 403
def test_sql_injection_prevented(client: TestClient):
"""Test SQL injection attempt rejected."""
response = client.get(
"/api/v1/documents",
params={"id": "'; DROP TABLE documents; --"}
)
# Should return validation error, not execute SQL
assert response.status_code in (400, 422)
def test_path_traversal_prevented(client: TestClient):
"""Test path traversal attempt rejected."""
response = client.get("/api/v1/results/../../etc/passwd")
assert response.status_code == 400
def test_rate_limit_enforced(client: TestClient):
"""Test rate limiting works."""
responses = [
client.post("/api/v1/infer", files={"file": b"test"})
for _ in range(15)
]
rate_limited = [r for r in responses if r.status_code == 429]
assert len(rate_limited) > 0
def test_large_file_rejected(client: TestClient):
"""Test file size limit enforced."""
large_content = b"x" * (11 * 1024 * 1024) # 11MB
response = client.post(
"/api/v1/infer",
files={"file": ("test.pdf", large_content)}
)
assert response.status_code == 400
```
## Pre-Deployment Security Checklist
Before ANY production deployment:
- [ ] **Secrets**: No hardcoded secrets, all in env vars
- [ ] **Input Validation**: All user inputs validated with Pydantic
- [ ] **SQL Injection**: All queries use parameterized queries
- [ ] **Path Traversal**: File paths validated and sanitized
- [ ] **Authentication**: API key or token validation
- [ ] **Authorization**: Role checks in place
- [ ] **Rate Limiting**: Enabled on all endpoints
- [ ] **HTTPS**: Enforced in production
- [ ] **CORS**: Properly configured (no wildcards)
- [ ] **Error Handling**: No sensitive data in errors
- [ ] **Logging**: No sensitive data logged
- [ ] **File Uploads**: Validated (size, type, magic bytes)
- [ ] **Temp Files**: Always cleaned up
- [ ] **Dependencies**: Up to date, no vulnerabilities
## Resources
- [OWASP Top 10](https://owasp.org/www-project-top-ten/)
- [FastAPI Security](https://fastapi.tiangolo.com/tutorial/security/)
- [Bandit (Python Security Linter)](https://bandit.readthedocs.io/)
- [pip-audit](https://pypi.org/project/pip-audit/)
---
**Remember**: Security is not optional. One vulnerability can compromise sensitive invoice data. When in doubt, err on the side of caution.

View File

@@ -0,0 +1,63 @@
---
name: strategic-compact
description: Suggests manual context compaction at logical intervals to preserve context through task phases rather than arbitrary auto-compaction.
---
# Strategic Compact Skill
Suggests manual `/compact` at strategic points in your workflow rather than relying on arbitrary auto-compaction.
## Why Strategic Compaction?
Auto-compaction triggers at arbitrary points:
- Often mid-task, losing important context
- No awareness of logical task boundaries
- Can interrupt complex multi-step operations
Strategic compaction at logical boundaries:
- **After exploration, before execution** - Compact research context, keep implementation plan
- **After completing a milestone** - Fresh start for next phase
- **Before major context shifts** - Clear exploration context before different task
## How It Works
The `suggest-compact.sh` script runs on PreToolUse (Edit/Write) and:
1. **Tracks tool calls** - Counts tool invocations in session
2. **Threshold detection** - Suggests at configurable threshold (default: 50 calls)
3. **Periodic reminders** - Reminds every 25 calls after threshold
## Hook Setup
Add to your `~/.claude/settings.json`:
```json
{
"hooks": {
"PreToolUse": [{
"matcher": "tool == \"Edit\" || tool == \"Write\"",
"hooks": [{
"type": "command",
"command": "~/.claude/skills/strategic-compact/suggest-compact.sh"
}]
}]
}
}
```
## Configuration
Environment variables:
- `COMPACT_THRESHOLD` - Tool calls before first suggestion (default: 50)
## Best Practices
1. **Compact after planning** - Once plan is finalized, compact to start fresh
2. **Compact after debugging** - Clear error-resolution context before continuing
3. **Don't compact mid-implementation** - Preserve context for related changes
4. **Read the suggestion** - The hook tells you *when*, you decide *if*
## Related
- [The Longform Guide](https://x.com/affaanmustafa/status/2014040193557471352) - Token optimization section
- Memory persistence hooks - For state that survives compaction

View File

@@ -0,0 +1,52 @@
#!/bin/bash
# Strategic Compact Suggester
# Runs on PreToolUse or periodically to suggest manual compaction at logical intervals
#
# Why manual over auto-compact:
# - Auto-compact happens at arbitrary points, often mid-task
# - Strategic compacting preserves context through logical phases
# - Compact after exploration, before execution
# - Compact after completing a milestone, before starting next
#
# Hook config (in ~/.claude/settings.json):
# {
# "hooks": {
# "PreToolUse": [{
# "matcher": "Edit|Write",
# "hooks": [{
# "type": "command",
# "command": "~/.claude/skills/strategic-compact/suggest-compact.sh"
# }]
# }]
# }
# }
#
# Criteria for suggesting compact:
# - Session has been running for extended period
# - Large number of tool calls made
# - Transitioning from research/exploration to implementation
# - Plan has been finalized
# Track tool call count (increment in a temp file)
COUNTER_FILE="/tmp/claude-tool-count-$$"
THRESHOLD=${COMPACT_THRESHOLD:-50}
# Initialize or increment counter
if [ -f "$COUNTER_FILE" ]; then
count=$(cat "$COUNTER_FILE")
count=$((count + 1))
echo "$count" > "$COUNTER_FILE"
else
echo "1" > "$COUNTER_FILE"
count=1
fi
# Suggest compact after threshold tool calls
if [ "$count" -eq "$THRESHOLD" ]; then
echo "[StrategicCompact] $THRESHOLD tool calls reached - consider /compact if transitioning phases" >&2
fi
# Suggest at regular intervals after threshold
if [ "$count" -gt "$THRESHOLD" ] && [ $((count % 25)) -eq 0 ]; then
echo "[StrategicCompact] $count tool calls - good checkpoint for /compact if context is stale" >&2
fi

View File

@@ -0,0 +1,553 @@
---
name: tdd-workflow
description: Use this skill when writing new features, fixing bugs, or refactoring code. Enforces test-driven development with 80%+ coverage including unit, integration, and E2E tests.
---
# Test-Driven Development Workflow
TDD principles for Python/FastAPI development with pytest.
## When to Activate
- Writing new features or functionality
- Fixing bugs or issues
- Refactoring existing code
- Adding API endpoints
- Creating new field extractors or normalizers
## Core Principles
### 1. Tests BEFORE Code
ALWAYS write tests first, then implement code to make tests pass.
### 2. Coverage Requirements
- Minimum 80% coverage (unit + integration + E2E)
- All edge cases covered
- Error scenarios tested
- Boundary conditions verified
### 3. Test Types
#### Unit Tests
- Individual functions and utilities
- Normalizers and validators
- Parsers and extractors
- Pure functions
#### Integration Tests
- API endpoints
- Database operations
- OCR + YOLO pipeline
- Service interactions
#### E2E Tests
- Complete inference pipeline
- PDF → Fields workflow
- API health and inference endpoints
## TDD Workflow Steps
### Step 1: Write User Journeys
```
As a [role], I want to [action], so that [benefit]
Example:
As an invoice processor, I want to extract Bankgiro from payment_line,
so that I can cross-validate OCR results.
```
### Step 2: Generate Test Cases
For each user journey, create comprehensive test cases:
```python
import pytest
class TestPaymentLineParser:
"""Tests for payment_line parsing and field extraction."""
def test_parse_payment_line_extracts_bankgiro(self):
"""Should extract Bankgiro from valid payment line."""
# Test implementation
pass
def test_parse_payment_line_handles_missing_checksum(self):
"""Should handle payment lines without checksum."""
pass
def test_parse_payment_line_validates_checksum(self):
"""Should validate checksum when present."""
pass
def test_parse_payment_line_returns_none_for_invalid(self):
"""Should return None for invalid payment lines."""
pass
```
### Step 3: Run Tests (They Should Fail)
```bash
pytest tests/test_ocr/test_machine_code_parser.py -v
# Tests should fail - we haven't implemented yet
```
### Step 4: Implement Code
Write minimal code to make tests pass:
```python
def parse_payment_line(line: str) -> PaymentLineData | None:
"""Parse Swedish payment line and extract fields."""
# Implementation guided by tests
pass
```
### Step 5: Run Tests Again
```bash
pytest tests/test_ocr/test_machine_code_parser.py -v
# Tests should now pass
```
### Step 6: Refactor
Improve code quality while keeping tests green:
- Remove duplication
- Improve naming
- Optimize performance
- Enhance readability
### Step 7: Verify Coverage
```bash
pytest --cov=src --cov-report=term-missing
# Verify 80%+ coverage achieved
```
## Testing Patterns
### Unit Test Pattern (pytest)
```python
import pytest
from src.normalize.bankgiro_normalizer import normalize_bankgiro
class TestBankgiroNormalizer:
"""Tests for Bankgiro normalization."""
def test_normalize_removes_hyphens(self):
"""Should remove hyphens from Bankgiro."""
result = normalize_bankgiro("123-4567")
assert result == "1234567"
def test_normalize_removes_spaces(self):
"""Should remove spaces from Bankgiro."""
result = normalize_bankgiro("123 4567")
assert result == "1234567"
def test_normalize_validates_length(self):
"""Should validate Bankgiro is 7-8 digits."""
result = normalize_bankgiro("123456") # 6 digits
assert result is None
def test_normalize_validates_checksum(self):
"""Should validate Luhn checksum."""
result = normalize_bankgiro("1234568") # Invalid checksum
assert result is None
@pytest.mark.parametrize("input_value,expected", [
("123-4567", "1234567"),
("1234567", "1234567"),
("123 4567", "1234567"),
("BG 123-4567", "1234567"),
])
def test_normalize_various_formats(self, input_value, expected):
"""Should handle various input formats."""
result = normalize_bankgiro(input_value)
assert result == expected
```
### API Integration Test Pattern
```python
import pytest
from fastapi.testclient import TestClient
from src.web.app import app
@pytest.fixture
def client():
return TestClient(app)
class TestHealthEndpoint:
"""Tests for /api/v1/health endpoint."""
def test_health_returns_200(self, client):
"""Should return 200 OK."""
response = client.get("/api/v1/health")
assert response.status_code == 200
def test_health_returns_status(self, client):
"""Should return health status."""
response = client.get("/api/v1/health")
data = response.json()
assert data["status"] == "healthy"
assert "model_loaded" in data
class TestInferEndpoint:
"""Tests for /api/v1/infer endpoint."""
def test_infer_requires_file(self, client):
"""Should require file upload."""
response = client.post("/api/v1/infer")
assert response.status_code == 422
def test_infer_rejects_non_pdf(self, client):
"""Should reject non-PDF files."""
response = client.post(
"/api/v1/infer",
files={"file": ("test.txt", b"not a pdf", "text/plain")}
)
assert response.status_code == 400
def test_infer_returns_fields(self, client, sample_invoice_pdf):
"""Should return extracted fields."""
with open(sample_invoice_pdf, "rb") as f:
response = client.post(
"/api/v1/infer",
files={"file": ("invoice.pdf", f, "application/pdf")}
)
assert response.status_code == 200
data = response.json()
assert data["success"] is True
assert "fields" in data
```
### E2E Test Pattern
```python
import pytest
import httpx
from pathlib import Path
@pytest.fixture(scope="module")
def running_server():
"""Ensure server is running for E2E tests."""
# Server should be started before running E2E tests
base_url = "http://localhost:8000"
yield base_url
class TestInferencePipeline:
"""E2E tests for complete inference pipeline."""
def test_health_check(self, running_server):
"""Should pass health check."""
response = httpx.get(f"{running_server}/api/v1/health")
assert response.status_code == 200
data = response.json()
assert data["status"] == "healthy"
assert data["model_loaded"] is True
def test_pdf_inference_returns_fields(self, running_server):
"""Should extract fields from PDF."""
pdf_path = Path("tests/fixtures/sample_invoice.pdf")
with open(pdf_path, "rb") as f:
response = httpx.post(
f"{running_server}/api/v1/infer",
files={"file": ("invoice.pdf", f, "application/pdf")}
)
assert response.status_code == 200
data = response.json()
assert data["success"] is True
assert "fields" in data
assert len(data["fields"]) > 0
def test_cross_validation_included(self, running_server):
"""Should include cross-validation for invoices with payment_line."""
pdf_path = Path("tests/fixtures/invoice_with_payment_line.pdf")
with open(pdf_path, "rb") as f:
response = httpx.post(
f"{running_server}/api/v1/infer",
files={"file": ("invoice.pdf", f, "application/pdf")}
)
data = response.json()
if data["fields"].get("payment_line"):
assert "cross_validation" in data
```
## Test File Organization
```
tests/
├── conftest.py # Shared fixtures
├── fixtures/ # Test data files
│ ├── sample_invoice.pdf
│ └── invoice_with_payment_line.pdf
├── test_cli/
│ └── test_infer.py
├── test_pdf/
│ ├── test_extractor.py
│ └── test_renderer.py
├── test_ocr/
│ ├── test_paddle_ocr.py
│ └── test_machine_code_parser.py
├── test_inference/
│ ├── test_pipeline.py
│ ├── test_yolo_detector.py
│ └── test_field_extractor.py
├── test_normalize/
│ ├── test_bankgiro_normalizer.py
│ ├── test_date_normalizer.py
│ └── test_amount_normalizer.py
├── test_web/
│ ├── test_routes.py
│ └── test_services.py
└── e2e/
└── test_inference_e2e.py
```
## Mocking External Services
### Mock PaddleOCR
```python
import pytest
from unittest.mock import Mock, patch
@pytest.fixture
def mock_paddle_ocr():
"""Mock PaddleOCR for unit tests."""
with patch("src.ocr.paddle_ocr.PaddleOCR") as mock:
instance = Mock()
instance.ocr.return_value = [
[
[[[0, 0], [100, 0], [100, 20], [0, 20]], ("Invoice Number", 0.95)],
[[[0, 30], [100, 30], [100, 50], [0, 50]], ("INV-2024-001", 0.98)]
]
]
mock.return_value = instance
yield instance
```
### Mock YOLO Model
```python
@pytest.fixture
def mock_yolo_model():
"""Mock YOLO model for unit tests."""
with patch("src.inference.yolo_detector.YOLO") as mock:
instance = Mock()
# Mock detection results
instance.return_value = Mock(
boxes=Mock(
xyxy=[[10, 20, 100, 50]],
conf=[0.95],
cls=[0] # invoice_number class
)
)
mock.return_value = instance
yield instance
```
### Mock Database
```python
@pytest.fixture
def mock_db_connection():
"""Mock database connection for unit tests."""
with patch("src.data.db.get_db_connection") as mock:
conn = Mock()
cursor = Mock()
cursor.fetchall.return_value = [
("doc-123", "processed", {"invoice_number": "INV-001"})
]
cursor.fetchone.return_value = ("doc-123",)
conn.cursor.return_value.__enter__ = Mock(return_value=cursor)
conn.cursor.return_value.__exit__ = Mock(return_value=False)
mock.return_value.__enter__ = Mock(return_value=conn)
mock.return_value.__exit__ = Mock(return_value=False)
yield conn
```
## Test Coverage Verification
### Run Coverage Report
```bash
# Run with coverage
pytest --cov=src --cov-report=term-missing
# Generate HTML report
pytest --cov=src --cov-report=html
# Open htmlcov/index.html in browser
```
### Coverage Configuration (pyproject.toml)
```toml
[tool.coverage.run]
source = ["src"]
omit = ["*/__init__.py", "*/test_*.py"]
[tool.coverage.report]
fail_under = 80
show_missing = true
exclude_lines = [
"pragma: no cover",
"if TYPE_CHECKING:",
"raise NotImplementedError",
]
```
## Common Testing Mistakes to Avoid
### WRONG: Testing Implementation Details
```python
# Don't test internal state
def test_parser_internal_state():
parser = PaymentLineParser()
parser._parse("...")
assert parser._groups == [...] # Internal state
```
### CORRECT: Test Public Interface
```python
# Test what users see
def test_parser_extracts_bankgiro():
result = parse_payment_line("...")
assert result.bankgiro == "1234567"
```
### WRONG: No Test Isolation
```python
# Tests depend on each other
class TestDocuments:
def test_creates_document(self):
create_document(...) # Creates in DB
def test_updates_document(self):
update_document(...) # Depends on previous test
```
### CORRECT: Independent Tests
```python
# Each test sets up its own data
class TestDocuments:
def test_creates_document(self, mock_db):
result = create_document(...)
assert result.id is not None
def test_updates_document(self, mock_db):
# Create own test data
doc = create_document(...)
result = update_document(doc.id, ...)
assert result.status == "updated"
```
### WRONG: Testing Too Much
```python
# One test doing everything
def test_full_invoice_processing():
# Load PDF
# Extract images
# Run YOLO
# Run OCR
# Normalize fields
# Save to DB
# Return response
```
### CORRECT: Focused Tests
```python
def test_yolo_detects_invoice_number():
"""Test only YOLO detection."""
result = detector.detect(image)
assert any(d.label == "invoice_number" for d in result)
def test_ocr_extracts_text():
"""Test only OCR extraction."""
result = ocr.extract(image, bbox)
assert result == "INV-2024-001"
def test_normalizer_formats_date():
"""Test only date normalization."""
result = normalize_date("2024-01-15")
assert result == "2024-01-15"
```
## Fixtures (conftest.py)
```python
import pytest
from pathlib import Path
from fastapi.testclient import TestClient
@pytest.fixture
def sample_invoice_pdf(tmp_path: Path) -> Path:
"""Create sample invoice PDF for testing."""
pdf_path = tmp_path / "invoice.pdf"
# Copy from fixtures or create minimal PDF
src = Path("tests/fixtures/sample_invoice.pdf")
if src.exists():
pdf_path.write_bytes(src.read_bytes())
return pdf_path
@pytest.fixture
def client():
"""FastAPI test client."""
from src.web.app import app
return TestClient(app)
@pytest.fixture
def sample_payment_line() -> str:
"""Sample Swedish payment line for testing."""
return "1234567#0000000012345#230115#00012345678901234567#1"
```
## Continuous Testing
### Watch Mode During Development
```bash
# Using pytest-watch
ptw -- tests/test_ocr/
# Tests run automatically on file changes
```
### Pre-Commit Hook
```bash
# .pre-commit-config.yaml
repos:
- repo: local
hooks:
- id: pytest
name: pytest
entry: pytest --tb=short -q
language: system
pass_filenames: false
always_run: true
```
### CI/CD Integration (GitHub Actions)
```yaml
- name: Run Tests
run: |
pytest --cov=src --cov-report=xml
- name: Upload Coverage
uses: codecov/codecov-action@v3
with:
file: coverage.xml
```
## Best Practices
1. **Write Tests First** - Always TDD
2. **One Assert Per Test** - Focus on single behavior
3. **Descriptive Test Names** - `test_<what>_<condition>_<expected>`
4. **Arrange-Act-Assert** - Clear test structure
5. **Mock External Dependencies** - Isolate unit tests
6. **Test Edge Cases** - None, empty, invalid, boundary
7. **Test Error Paths** - Not just happy paths
8. **Keep Tests Fast** - Unit tests < 50ms each
9. **Clean Up After Tests** - Use fixtures with cleanup
10. **Review Coverage Reports** - Identify gaps
## Success Metrics
- 80%+ code coverage achieved
- All tests passing (green)
- No skipped or disabled tests
- Fast test execution (< 60s for unit tests)
- E2E tests cover critical inference flow
- Tests catch bugs before production
---
**Remember**: Tests are not optional. They are the safety net that enables confident refactoring, rapid development, and production reliability.

View File

@@ -0,0 +1,242 @@
# Verification Loop Skill
Comprehensive verification system for Python/FastAPI development.
## When to Use
Invoke this skill:
- After completing a feature or significant code change
- Before creating a PR
- When you want to ensure quality gates pass
- After refactoring
- Before deployment
## Verification Phases
### Phase 1: Type Check
```bash
# Run mypy type checker
mypy src/ --ignore-missing-imports 2>&1 | head -30
```
Report all type errors. Fix critical ones before continuing.
### Phase 2: Lint Check
```bash
# Run ruff linter
ruff check src/ 2>&1 | head -30
# Auto-fix if desired
ruff check src/ --fix
```
Check for:
- Unused imports
- Code style violations
- Common Python anti-patterns
### Phase 3: Test Suite
```bash
# Run tests with coverage
pytest --cov=src --cov-report=term-missing -q 2>&1 | tail -50
# Run specific test file
pytest tests/test_ocr/test_machine_code_parser.py -v
# Run with short traceback
pytest -x --tb=short
```
Report:
- Total tests: X
- Passed: X
- Failed: X
- Coverage: X%
- Target: 80% minimum
### Phase 4: Security Scan
```bash
# Check for hardcoded secrets
grep -rn "password\s*=" --include="*.py" src/ 2>/dev/null | grep -v "db_password:" | head -10
grep -rn "api_key\s*=" --include="*.py" src/ 2>/dev/null | head -10
grep -rn "sk-" --include="*.py" src/ 2>/dev/null | head -10
# Check for print statements (should use logging)
grep -rn "print(" --include="*.py" src/ 2>/dev/null | head -10
# Check for bare except
grep -rn "except:" --include="*.py" src/ 2>/dev/null | head -10
# Check for SQL injection risks (f-strings in execute)
grep -rn 'execute(f"' --include="*.py" src/ 2>/dev/null | head -10
grep -rn "execute(f'" --include="*.py" src/ 2>/dev/null | head -10
```
### Phase 5: Import Check
```bash
# Verify all imports work
python -c "from src.web.app import app; print('Web app OK')"
python -c "from src.inference.pipeline import InferencePipeline; print('Pipeline OK')"
python -c "from src.ocr.machine_code_parser import parse_payment_line; print('Parser OK')"
```
### Phase 6: Diff Review
```bash
# Show what changed
git diff --stat
git diff HEAD --name-only
# Show staged changes
git diff --staged --stat
```
Review each changed file for:
- Unintended changes
- Missing error handling
- Potential edge cases
- Missing type hints
- Mutable default arguments
### Phase 7: API Smoke Test (if server running)
```bash
# Health check
curl -s http://localhost:8000/api/v1/health | python -m json.tool
# Verify response format
curl -s http://localhost:8000/api/v1/health | grep -q "healthy" && echo "Health: OK" || echo "Health: FAIL"
```
## Output Format
After running all phases, produce a verification report:
```
VERIFICATION REPORT
==================
Types: [PASS/FAIL] (X errors)
Lint: [PASS/FAIL] (X warnings)
Tests: [PASS/FAIL] (X/Y passed, Z% coverage)
Security: [PASS/FAIL] (X issues)
Imports: [PASS/FAIL]
Diff: [X files changed]
Overall: [READY/NOT READY] for PR
Issues to Fix:
1. ...
2. ...
```
## Quick Commands
```bash
# Full verification (WSL)
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && mypy src/ --ignore-missing-imports && ruff check src/ && pytest -x --tb=short"
# Type check only
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && mypy src/ --ignore-missing-imports"
# Tests only
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && pytest --cov=src -q"
```
## Verification Checklist
### Before Commit
- [ ] mypy passes (no type errors)
- [ ] ruff check passes (no lint errors)
- [ ] All tests pass
- [ ] No print() statements in production code
- [ ] No hardcoded secrets
- [ ] No bare `except:` clauses
- [ ] No SQL injection risks (f-strings in queries)
- [ ] Coverage >= 80% for changed code
### Before PR
- [ ] All above checks pass
- [ ] git diff reviewed for unintended changes
- [ ] New code has tests
- [ ] Type hints on all public functions
- [ ] Docstrings on public APIs
- [ ] No TODO/FIXME for critical items
### Before Deployment
- [ ] All above checks pass
- [ ] E2E tests pass
- [ ] Health check returns healthy
- [ ] Model loaded successfully
- [ ] No server errors in logs
## Common Issues and Fixes
### Type Error: Missing return type
```python
# Before
def process(data):
return result
# After
def process(data: dict) -> InferenceResult:
return result
```
### Lint Error: Unused import
```python
# Remove unused imports or add to __all__
```
### Security: print() in production
```python
# Before
print(f"Processing {doc_id}")
# After
logger.info(f"Processing {doc_id}")
```
### Security: Bare except
```python
# Before
except:
pass
# After
except Exception as e:
logger.error(f"Error: {e}")
raise
```
### Security: SQL injection
```python
# Before (DANGEROUS)
cur.execute(f"SELECT * FROM docs WHERE id = '{user_input}'")
# After (SAFE)
cur.execute("SELECT * FROM docs WHERE id = %s", (user_input,))
```
## Continuous Mode
For long sessions, run verification after major changes:
```markdown
Checkpoints:
- After completing each function
- After finishing a module
- Before moving to next task
- Every 15-20 minutes of coding
Run: /verify
```
## Integration with Other Skills
| Skill | Purpose |
|-------|---------|
| code-review | Detailed code analysis |
| security-review | Deep security audit |
| tdd-workflow | Test coverage |
| build-fix | Fix errors incrementally |
This skill provides quick, comprehensive verification. Use specialized skills for deeper analysis.

BIN
.coverage Normal file

Binary file not shown.

39
.env.example Normal file
View File

@@ -0,0 +1,39 @@
# Database Configuration
# Copy this file to .env and fill in your actual values
# PostgreSQL Database
DB_HOST=192.168.68.31
DB_PORT=5432
DB_NAME=docmaster
DB_USER=docmaster
DB_PASSWORD=your_password_here
# Storage Configuration
# Backend type: local, azure_blob, or s3
# All storage paths are relative to STORAGE_BASE_PATH (documents/, images/, uploads/, etc.)
STORAGE_BACKEND=local
STORAGE_BASE_PATH=./data
# Azure Blob Storage (when STORAGE_BACKEND=azure_blob)
# AZURE_STORAGE_CONNECTION_STRING=your_connection_string
# AZURE_STORAGE_CONTAINER=documents
# AWS S3 Storage (when STORAGE_BACKEND=s3)
# AWS_S3_BUCKET=your_bucket_name
# AWS_REGION=us-east-1
# AWS_ACCESS_KEY_ID=your_access_key
# AWS_SECRET_ACCESS_KEY=your_secret_key
# AWS_ENDPOINT_URL= # Optional: for S3-compatible services like MinIO
# Model Configuration (optional)
# MODEL_PATH=runs/train/invoice_fields/weights/best.pt
# CONFIDENCE_THRESHOLD=0.5
# Server Configuration (optional)
# SERVER_HOST=0.0.0.0
# SERVER_PORT=8000
# Auto-labeling Configuration (optional)
# AUTOLABEL_WORKERS=2
# AUTOLABEL_DPI=150
# AUTOLABEL_MIN_CONFIDENCE=0.5

4
.gitignore vendored
View File

@@ -52,6 +52,10 @@ reports/*.jsonl
logs/
*.log
# Coverage
htmlcov/
.coverage
# Jupyter
.ipynb_checkpoints/

666
ARCHITECTURE_REVIEW.md Normal file
View File

@@ -0,0 +1,666 @@
# Invoice Master POC v2 - 总体架构审查报告
**审查日期**: 2026-02-01
**审查人**: Claude Code
**项目路径**: `/Users/yiukai/Documents/git/invoice-master-poc-v2`
---
## 架构概述
### 整体架构图
```
┌─────────────────────────────────────────────────────────────────┐
│ Frontend (React) │
│ Vite + TypeScript + TailwindCSS │
└─────────────────────────────┬───────────────────────────────────┘
│ HTTP/REST
┌─────────────────────────────▼───────────────────────────────────┐
│ Inference Service (FastAPI) │
│ ┌──────────────┬──────────────┬──────────────┬──────────────┐ │
│ │ Public API │ Admin API │ Training API│ Batch API │ │
│ └──────────────┴──────────────┴──────────────┴──────────────┘ │
│ ┌────────────────────────────────────────────────────────────┐ │
│ │ Service Layer │ │
│ │ InferenceService │ AsyncProcessing │ BatchUpload │ Dataset │ │
│ └────────────────────────────────────────────────────────────┘ │
│ ┌────────────────────────────────────────────────────────────┐ │
│ │ Data Layer │ │
│ │ AdminDB │ AsyncRequestDB │ SQLModel │ PostgreSQL │ │
│ └────────────────────────────────────────────────────────────┘ │
│ ┌────────────────────────────────────────────────────────────┐ │
│ │ Core Components │ │
│ │ RateLimiter │ Schedulers │ TaskQueues │ Auth │ │
│ └────────────────────────────────────────────────────────────┘ │
└─────────────────────────────┬───────────────────────────────────┘
│ PostgreSQL
┌─────────────────────────────▼───────────────────────────────────┐
│ Training Service (GPU) │
│ ┌────────────────────────────────────────────────────────────┐ │
│ │ CLI: train │ autolabel │ analyze │ validate │ │
│ └────────────────────────────────────────────────────────────┘ │
│ ┌────────────────────────────────────────────────────────────┐ │
│ │ YOLO: db_dataset │ annotation_generator │ │
│ └────────────────────────────────────────────────────────────┘ │
│ ┌────────────────────────────────────────────────────────────┐ │
│ │ Processing: CPU Pool │ GPU Pool │ Task Dispatcher │ │
│ └────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘
┌─────────┴─────────┐
▼ ▼
┌──────────────┐ ┌──────────────┐
│ Shared │ │ Storage │
│ PDF │ OCR │ │ Local/Azure/ │
│ Normalize │ │ S3 │
└──────────────┘ └──────────────┘
```
### 技术栈
| 层级 | 技术 | 评估 |
|------|------|------|
| **前端** | React + Vite + TypeScript + TailwindCSS | ✅ 现代栈 |
| **API 框架** | FastAPI | ✅ 高性能,类型安全 |
| **数据库** | PostgreSQL + SQLModel | ✅ 类型安全 ORM |
| **目标检测** | YOLOv11 (Ultralytics) | ✅ 业界标准 |
| **OCR** | PaddleOCR v5 | ✅ 支持瑞典语 |
| **部署** | Docker + Azure/AWS | ✅ 云原生 |
---
## 架构优势
### 1. Monorepo 结构 ✅
```
packages/
├── shared/ # 共享库 - 无外部依赖
├── training/ # 训练服务 - 依赖 shared
└── inference/ # 推理服务 - 依赖 shared
```
**优点**:
- 清晰的包边界,无循环依赖
- 独立部署training 按需启动
- 代码复用率高
### 2. 分层架构 ✅
```
API Routes (web/api/v1/)
Service Layer (web/services/)
Data Layer (data/)
Database (PostgreSQL)
```
**优点**:
- 职责分离明确
- 便于单元测试
- 可替换底层实现
### 3. 依赖注入 ✅
```python
# FastAPI Depends 使用得当
@router.post("/infer")
async def infer(
file: UploadFile,
db: AdminDB = Depends(get_admin_db), # 注入
token: str = Depends(validate_admin_token),
):
```
### 4. 存储抽象层 ✅
```python
# 统一接口,支持多后端
class StorageBackend(ABC):
def upload(self, source: Path, destination: str) -> None: ...
def download(self, source: str, destination: Path) -> None: ...
def get_presigned_url(self, path: str) -> str: ...
# 实现: LocalStorageBackend, AzureStorageBackend, S3StorageBackend
```
### 5. 动态模型管理 ✅
```python
# 数据库驱动的模型切换
def get_active_model_path() -> Path | None:
db = AdminDB()
active_model = db.get_active_model_version()
return active_model.model_path if active_model else None
inference_service = InferenceService(
model_path_resolver=get_active_model_path,
)
```
### 6. 任务队列分离 ✅
```python
# 不同类型任务使用不同队列
- AsyncTaskQueue: 异步推理任务
- BatchQueue: 批量上传任务
- TrainingScheduler: 训练任务调度
- AutoLabelScheduler: 自动标注调度
```
---
## 架构问题与风险
### 1. 数据库层职责过重 ⚠️ **中风险**
**问题**: `AdminDB` 类过大,违反单一职责原则
```python
# packages/inference/inference/data/admin_db.py
class AdminDB:
# Token 管理 (5 个方法)
def is_valid_admin_token(self, token: str) -> bool: ...
def create_admin_token(self, token: str, name: str): ...
# 文档管理 (8 个方法)
def create_document(self, ...): ...
def get_document(self, doc_id: str): ...
# 标注管理 (6 个方法)
def create_annotation(self, ...): ...
def get_annotations(self, doc_id: str): ...
# 训练任务 (7 个方法)
def create_training_task(self, ...): ...
def update_training_task(self, ...): ...
# 数据集 (6 个方法)
def create_dataset(self, ...): ...
def get_dataset(self, dataset_id: str): ...
# 模型版本 (5 个方法)
def create_model_version(self, ...): ...
def activate_model_version(self, ...): ...
# 批处理 (4 个方法)
# 锁管理 (3 个方法)
# ... 总计 50+ 方法
```
**影响**:
- 类过大,难以维护
- 测试困难
- 不同领域变更互相影响
**建议**: 按领域拆分为 Repository 模式
```python
# 建议重构
class TokenRepository:
def validate(self, token: str) -> bool: ...
def create(self, token: Token) -> None: ...
class DocumentRepository:
def find_by_id(self, doc_id: str) -> Document | None: ...
def save(self, document: Document) -> None: ...
class TrainingRepository:
def create_task(self, config: TrainingConfig) -> TrainingTask: ...
def update_task_status(self, task_id: str, status: TaskStatus): ...
class ModelRepository:
def get_active(self) -> ModelVersion | None: ...
def activate(self, version_id: str) -> None: ...
```
---
### 2. Service 层混合业务逻辑与技术细节 ⚠️ **中风险**
**问题**: `InferenceService` 既处理业务逻辑又处理技术实现
```python
# packages/inference/inference/web/services/inference.py
class InferenceService:
def process(self, image_bytes: bytes) -> ServiceResult:
# 1. 技术细节: 图像解码
image = Image.open(io.BytesIO(image_bytes))
# 2. 业务逻辑: 字段提取
fields = self._extract_fields(image)
# 3. 技术细节: 模型推理
detections = self._model.predict(image)
# 4. 业务逻辑: 结果验证
if not self._validate_fields(fields):
raise ValidationError()
```
**影响**:
- 难以测试业务逻辑
- 技术变更影响业务代码
- 无法切换技术实现
**建议**: 引入领域层和适配器模式
```python
# 领域层 - 纯业务逻辑
@dataclass
class InvoiceDocument:
document_id: str
pages: list[Page]
class InvoiceExtractor:
"""纯业务逻辑,不依赖技术实现"""
def extract(self, document: InvoiceDocument) -> InvoiceFields:
# 只处理业务规则
pass
# 适配器层 - 技术实现
class YoloFieldDetector:
"""YOLO 技术适配器"""
def __init__(self, model_path: Path):
self._model = YOLO(model_path)
def detect(self, image: np.ndarray) -> list[FieldRegion]:
return self._model.predict(image)
class PaddleOcrEngine:
"""PaddleOCR 技术适配器"""
def __init__(self):
self._ocr = PaddleOCR()
def recognize(self, image: np.ndarray, region: BoundingBox) -> str:
return self._ocr.ocr(image, region)
# 应用服务 - 协调领域和适配器
class InvoiceProcessingService:
def __init__(
self,
extractor: InvoiceExtractor,
detector: FieldDetector,
ocr: OcrEngine,
):
self._extractor = extractor
self._detector = detector
self._ocr = ocr
```
---
### 3. 调度器设计分散 ⚠️ **中风险**
**问题**: 多个独立调度器缺乏统一协调
```python
# 当前设计 - 4 个独立调度器
# 1. TrainingScheduler (core/scheduler.py)
# 2. AutoLabelScheduler (core/autolabel_scheduler.py)
# 3. AsyncTaskQueue (workers/async_queue.py)
# 4. BatchQueue (workers/batch_queue.py)
# app.py 中分别启动
start_scheduler() # 训练调度器
start_autolabel_scheduler() # 自动标注调度器
init_batch_queue() # 批处理队列
```
**影响**:
- 资源竞争风险
- 难以监控和追踪
- 任务优先级难以管理
- 重启时任务丢失
**建议**: 使用 Celery + Redis 统一任务队列
```python
# 建议重构
from celery import Celery
app = Celery('invoice_master')
@app.task(bind=True, max_retries=3)
def process_inference(self, document_id: str):
"""异步推理任务"""
try:
service = get_inference_service()
result = service.process(document_id)
return result
except Exception as exc:
raise self.retry(exc=exc, countdown=60)
@app.task
def train_model(dataset_id: str, config: dict):
"""训练任务"""
training_service = get_training_service()
return training_service.train(dataset_id, config)
@app.task
def auto_label_documents(document_ids: list[str]):
"""批量自动标注"""
for doc_id in document_ids:
auto_label_document.delay(doc_id)
# 优先级队列
app.conf.task_routes = {
'tasks.process_inference': {'queue': 'high_priority'},
'tasks.train_model': {'queue': 'gpu_queue'},
'tasks.auto_label_documents': {'queue': 'low_priority'},
}
```
---
### 4. 配置分散 ⚠️ **低风险**
**问题**: 配置分散在多个文件
```python
# packages/shared/shared/config.py
DATABASE = {...}
PATHS = {...}
AUTOLABEL = {...}
# packages/inference/inference/web/config.py
@dataclass
class ModelConfig: ...
@dataclass
class ServerConfig: ...
@dataclass
class FileConfig: ...
# 环境变量
# .env 文件
```
**影响**:
- 配置难以追踪
- 可能出现不一致
- 缺少配置验证
**建议**: 使用 Pydantic Settings 集中管理
```python
# config/settings.py
from pydantic_settings import BaseSettings, SettingsConfigDict
class DatabaseSettings(BaseSettings):
model_config = SettingsConfigDict(env_prefix='DB_')
host: str = 'localhost'
port: int = 5432
name: str = 'docmaster'
user: str = 'docmaster'
password: str # 无默认值,必须设置
class StorageSettings(BaseSettings):
model_config = SettingsConfigDict(env_prefix='STORAGE_')
backend: str = 'local'
base_path: str = '~/invoice-data'
azure_connection_string: str | None = None
s3_bucket: str | None = None
class Settings(BaseSettings):
model_config = SettingsConfigDict(
env_file='.env',
env_file_encoding='utf-8',
)
database: DatabaseSettings = DatabaseSettings()
storage: StorageSettings = StorageSettings()
# 验证
@field_validator('database')
def validate_database(cls, v):
if not v.password:
raise ValueError('Database password is required')
return v
# 全局配置实例
settings = Settings()
```
---
### 5. 内存队列单点故障 ⚠️ **中风险**
**问题**: AsyncTaskQueue 和 BatchQueue 基于内存
```python
# workers/async_queue.py
class AsyncTaskQueue:
def __init__(self):
self._queue = Queue() # 内存队列
self._workers = []
def enqueue(self, task: AsyncTask) -> None:
self._queue.put(task) # 仅存储在内存
```
**影响**:
- 服务重启丢失所有待处理任务
- 无法水平扩展
- 任务持久化困难
**建议**: 使用 Redis/RabbitMQ 持久化队列
---
### 6. 缺少 API 版本迁移策略 ❓ **低风险**
**问题**: 有 `/api/v1/` 版本,但缺少升级策略
```
当前: /api/v1/admin/documents
未来: /api/v2/admin/documents ?
```
**建议**:
- 制定 API 版本升级流程
- 使用 Header 版本控制
- 维护版本兼容性文档
---
## 关键架构风险矩阵
| 风险项 | 概率 | 影响 | 风险等级 | 优先级 |
|--------|------|------|----------|--------|
| 内存队列丢失任务 | 中 | 高 | **高** | 🔴 P0 |
| AdminDB 职责过重 | 高 | 中 | **中** | 🟡 P1 |
| Service 层混合 | 高 | 中 | **中** | 🟡 P1 |
| 调度器资源竞争 | 中 | 中 | **中** | 🟡 P1 |
| 配置分散 | 高 | 低 | **低** | 🟢 P2 |
| API 版本策略 | 低 | 低 | **低** | 🟢 P2 |
---
## 改进建议路线图
### Phase 1: 立即执行 (本周)
#### 1.1 拆分 AdminDB
```python
# 创建 repositories 包
inference/data/repositories/
├── __init__.py
├── base.py # Repository 基类
├── token.py # TokenRepository
├── document.py # DocumentRepository
├── annotation.py # AnnotationRepository
├── training.py # TrainingRepository
├── dataset.py # DatasetRepository
└── model.py # ModelRepository
```
#### 1.2 统一配置
```python
# 创建统一配置模块
inference/config/
├── __init__.py
├── settings.py # Pydantic Settings
└── validators.py # 配置验证
```
### Phase 2: 短期执行 (本月)
#### 2.1 引入消息队列
```yaml
# docker-compose.yml 添加
services:
redis:
image: redis:7-alpine
ports:
- "6379:6379"
celery_worker:
build: .
command: celery -A inference.tasks worker -l info
depends_on:
- redis
- postgres
```
#### 2.2 添加缓存层
```python
# 使用 Redis 缓存热点数据
from redis import Redis
redis_client = Redis(host='localhost', port=6379)
class CachedDocumentRepository(DocumentRepository):
def find_by_id(self, doc_id: str) -> Document | None:
# 先查缓存
cached = redis_client.get(f"doc:{doc_id}")
if cached:
return Document.parse_raw(cached)
# 再查数据库
doc = super().find_by_id(doc_id)
if doc:
redis_client.setex(f"doc:{doc_id}", 3600, doc.json())
return doc
```
### Phase 3: 长期执行 (本季度)
#### 3.1 数据库读写分离
```python
# 配置主从数据库
class DatabaseManager:
def __init__(self):
self._master = create_engine(MASTER_DB_URL)
self._replica = create_engine(REPLICA_DB_URL)
def get_session(self, readonly: bool = False) -> Session:
engine = self._replica if readonly else self._master
return Session(engine)
```
#### 3.2 事件驱动架构
```python
# 引入事件总线
from event_bus import EventBus
bus = EventBus()
# 发布事件
@router.post("/documents")
async def create_document(...):
doc = document_repo.save(document)
bus.publish('document.created', {'document_id': doc.id})
return doc
# 订阅事件
@bus.subscribe('document.created')
def on_document_created(event):
# 触发自动标注
auto_label_task.delay(event['document_id'])
```
---
## 架构演进建议
### 当前架构 (适合 1-10 用户)
```
Single Instance
├── FastAPI App
├── Memory Queues
└── PostgreSQL
```
### 目标架构 (适合 100+ 用户)
```
Load Balancer
├── FastAPI Instance 1
├── FastAPI Instance 2
└── FastAPI Instance N
┌───────┴───────┐
▼ ▼
Redis Cluster PostgreSQL
(Celery + Cache) (Master + Replica)
```
---
## 总结
### 总体评分
| 维度 | 评分 | 说明 |
|------|------|------|
| **模块化** | 8/10 | 包结构清晰,但部分类过大 |
| **可扩展性** | 7/10 | 水平扩展良好,垂直扩展受限 |
| **可维护性** | 8/10 | 分层合理,但职责边界需细化 |
| **可靠性** | 7/10 | 内存队列是单点故障 |
| **性能** | 8/10 | 异步处理良好 |
| **安全性** | 8/10 | 基础安全到位 |
| **总体** | **7.7/10** | 良好的架构基础,需优化细节 |
### 关键结论
1. **架构设计合理**: Monorepo + 分层架构适合当前规模
2. **主要风险**: 内存队列和数据库职责过重
3. **演进路径**: 引入消息队列和缓存层
4. **投入产出**: 当前架构可支撑到 100+ 用户,无需大规模重构
### 下一步行动
| 优先级 | 任务 | 预计工时 | 影响 |
|--------|------|----------|------|
| 🔴 P0 | 引入 Celery + Redis | 3 天 | 解决任务丢失问题 |
| 🟡 P1 | 拆分 AdminDB | 2 天 | 提升可维护性 |
| 🟡 P1 | 统一配置管理 | 1 天 | 减少配置错误 |
| 🟢 P2 | 添加缓存层 | 2 天 | 提升性能 |
| 🟢 P2 | 数据库读写分离 | 3 天 | 提升扩展性 |
---
## 附录
### 关键文件清单
| 文件 | 职责 | 问题 |
|------|------|------|
| `inference/data/admin_db.py` | 数据库操作 | 类过大,需拆分 |
| `inference/web/services/inference.py` | 推理服务 | 混合业务和技术 |
| `inference/web/workers/async_queue.py` | 异步队列 | 内存存储,易丢失 |
| `inference/web/core/scheduler.py` | 任务调度 | 缺少统一协调 |
| `shared/shared/config.py` | 共享配置 | 分散管理 |
### 参考资源
- [Repository Pattern](https://martinfowler.com/eaaCatalog/repository.html)
- [Celery Documentation](https://docs.celeryproject.org/)
- [Pydantic Settings](https://docs.pydantic.dev/latest/concepts/pydantic_settings/)
- [FastAPI Best Practices](https://fastapi.tiangolo.com/tutorial/bigger-applications/)

317
CHANGELOG.md Normal file
View File

@@ -0,0 +1,317 @@
# Changelog
All notable changes to the Invoice Field Extraction project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [Unreleased]
### Added - Phase 1: Security & Infrastructure (2026-01-22)
#### Security Enhancements
- **Environment Variable Management**: Added `python-dotenv` for secure configuration management
- Created `.env.example` template file for configuration reference
- Created `.env` file for actual credentials (gitignored)
- Updated `config.py` to load database password from environment variables
- Added validation to ensure `DB_PASSWORD` is set at startup
- Files modified: `config.py`, `requirements.txt`
- New files: `.env`, `.env.example`
- Tests: `tests/test_config.py` (7 tests, all passing)
- **SQL Injection Prevention**: Fixed SQL injection vulnerabilities in database queries
- Replaced f-string formatting with parameterized queries in `LIMIT` clauses
- Updated `get_all_documents_summary()` to use `%s` placeholder for LIMIT parameter
- Updated `get_failed_matches()` to use `%s` placeholder for LIMIT parameter
- Files modified: `src/data/db.py` (lines 246, 298)
- Tests: `tests/test_db_security.py` (9 tests, all passing)
#### Code Quality
- **Exception Hierarchy**: Created comprehensive custom exception system
- Added base class `InvoiceExtractionError` with message and details support
- Added specific exception types:
- `PDFProcessingError` - PDF rendering/conversion errors
- `OCRError` - OCR processing errors
- `ModelInferenceError` - YOLO model errors
- `FieldValidationError` - Field validation errors (with field-specific attributes)
- `DatabaseError` - Database operation errors
- `ConfigurationError` - Configuration errors
- `PaymentLineParseError` - Payment line parsing errors
- `CustomerNumberParseError` - Customer number parsing errors
- `DataLoadError` - Data loading errors
- `AnnotationError` - Annotation generation errors
- New file: `src/exceptions.py`
- Tests: `tests/test_exceptions.py` (16 tests, all passing)
### Testing
- Added 32 new tests across 3 test files
- Configuration tests: 7 tests
- SQL injection prevention tests: 9 tests
- Exception hierarchy tests: 16 tests
- All tests passing (32/32)
### Documentation
- Created `docs/CODE_REVIEW_REPORT.md` - Comprehensive code quality analysis (550+ lines)
- Created `docs/REFACTORING_PLAN.md` - Detailed 3-phase refactoring plan (600+ lines)
- Created `CHANGELOG.md` - Project changelog (this file)
### Changed
- **Configuration Loading**: Database configuration now loads from environment variables instead of hardcoded values
- Breaking change: Requires `.env` file with `DB_PASSWORD` set
- Migration: Copy `.env.example` to `.env` and set your database password
### Security
- **Fixed**: Database password no longer stored in plain text in `config.py`
- **Fixed**: SQL injection vulnerabilities in LIMIT clauses (2 instances)
### Technical Debt Addressed
- Eliminated security vulnerability: plaintext password storage
- Reduced SQL injection attack surface
- Improved error handling granularity with custom exceptions
---
### Added - Phase 2: Parser Refactoring (2026-01-22)
#### Unified Parser Modules
- **Payment Line Parser**: Created dedicated payment line parsing module
- Handles Swedish payment line format: `# <OCR> # <Kronor> <Öre> <Type> > <Account>#<Check>#`
- Tolerates common OCR errors: spaces in numbers, missing symbols, spaces in check digits
- Supports 4 parsing patterns: full format, no amount, alternative, account-only
- Returns structured `PaymentLineData` with parsed fields
- New file: `src/inference/payment_line_parser.py` (90 lines, 92% coverage)
- Tests: `tests/test_payment_line_parser.py` (23 tests, all passing)
- Eliminates 1st code duplication (payment line parsing logic)
- **Customer Number Parser**: Created dedicated customer number parsing module
- Handles Swedish customer number formats: `JTY 576-3`, `DWQ 211-X`, `FFL 019N`, etc.
- Uses Strategy Pattern with 5 pattern classes:
- `LabeledPattern` - Explicit labels (highest priority, 0.98 confidence)
- `DashFormatPattern` - Standard format with dash (0.95 confidence)
- `NoDashFormatPattern` - Format without dash, adds dash automatically (0.90 confidence)
- `CompactFormatPattern` - Compact format without spaces (0.75 confidence)
- `GenericAlphanumericPattern` - Fallback generic pattern (variable confidence)
- Excludes Swedish postal codes (`SE XXX XX` format)
- Returns highest confidence match
- New file: `src/inference/customer_number_parser.py` (154 lines, 92% coverage)
- Tests: `tests/test_customer_number_parser.py` (32 tests, all passing)
- Reduces `_normalize_customer_number` complexity (127 lines → will use 5-10 lines after integration)
### Testing Summary
**Phase 1 Tests** (32 tests):
- Configuration tests: 7 tests ([test_config.py](tests/test_config.py))
- SQL injection prevention tests: 9 tests ([test_db_security.py](tests/test_db_security.py))
- Exception hierarchy tests: 16 tests ([test_exceptions.py](tests/test_exceptions.py))
**Phase 2 Tests** (121 tests):
- Payment line parser tests: 23 tests ([test_payment_line_parser.py](tests/test_payment_line_parser.py))
- Standard parsing, OCR error handling, real-world examples, edge cases
- Coverage: 92%
- Customer number parser tests: 32 tests ([test_customer_number_parser.py](tests/test_customer_number_parser.py))
- Pattern matching (DashFormat, NoDashFormat, Compact, Labeled)
- Real-world examples, edge cases, Swedish postal code exclusion
- Coverage: 92%
- Field extractor integration tests: 45 tests ([test_field_extractor.py](src/inference/test_field_extractor.py))
- Validates backward compatibility with existing code
- Tests for invoice numbers, bankgiro, plusgiro, amounts, OCR, dates, payment lines, customer numbers
- Pipeline integration tests: 21 tests ([test_pipeline.py](src/inference/test_pipeline.py))
- Cross-validation, payment line parsing, field overrides
**Total**: 153 tests, 100% passing, 4.50s runtime
### Code Quality
- **Eliminated Code Duplication**: Payment line parsing previously in 3 places, now unified in 1 module
- **Improved Maintainability**: Strategy Pattern makes customer number patterns easy to extend
- **Better Test Coverage**: New parsers have 92% coverage vs original 10% in field_extractor.py
#### Parser Integration into field_extractor.py (2026-01-22)
- **field_extractor.py Integration**: Successfully integrated new parsers
- Added `PaymentLineParser` and `CustomerNumberParser` instances (lines 99-101)
- Replaced `_normalize_payment_line` method: 74 lines → 3 lines (lines 640-657)
- Replaced `_normalize_customer_number` method: 127 lines → 3 lines (lines 697-707)
- All 45 existing tests pass (100% backward compatibility maintained)
- Tests run time: 4.21 seconds
- File: `src/inference/field_extractor.py`
#### Parser Integration into pipeline.py (2026-01-22)
- **pipeline.py Integration**: Successfully integrated PaymentLineParser
- Added `PaymentLineParser` import (line 15)
- Added `payment_line_parser` instance initialization (line 128)
- Replaced `_parse_machine_readable_payment_line` method: 36 lines → 6 lines (lines 219-233)
- All 21 existing tests pass (100% backward compatibility maintained)
- Tests run time: 4.00 seconds
- File: `src/inference/pipeline.py`
### Phase 2 Status: **COMPLETED** ✅
- [x] Create unified `payment_line_parser` module ✅
- [x] Create unified `customer_number_parser` module ✅
- [x] Refactor `field_extractor.py` to use new parsers ✅
- [x] Refactor `pipeline.py` to use new parsers ✅
- [x] Comprehensive test suite (153 tests, 100% passing) ✅
### Achieved Impact
- Eliminate code duplication: 3 implementations → 1 ✅ (payment_line unified across field_extractor.py, pipeline.py, tests)
- Reduce `_normalize_payment_line` complexity in field_extractor.py: 74 lines → 3 lines ✅
- Reduce `_normalize_customer_number` complexity in field_extractor.py: 127 lines → 3 lines ✅
- Reduce `_parse_machine_readable_payment_line` complexity in pipeline.py: 36 lines → 6 lines ✅
- Total lines of code eliminated: 201 lines reduced to 12 lines (94% reduction) ✅
- Improve test coverage: New parser modules have 92% coverage (vs original 10% in field_extractor.py)
- Simplify maintenance: Pattern-based approach makes extension easy
- 100% backward compatibility: All 66 existing tests pass (45 field_extractor + 21 pipeline)
---
## Phase 3: Performance & Documentation (2026-01-22)
### Added
#### Configuration Constants Extraction
- **Created `src/inference/constants.py`**: Centralized configuration constants
- Detection & model configuration (confidence thresholds, IOU)
- Image processing configuration (DPI, scaling factors)
- Customer number parser confidence scores
- Field extraction confidence multipliers
- Account type detection thresholds
- Pattern matching constants
- 90 lines of well-documented constants with usage notes
- Eliminates ~15 hardcoded magic numbers across codebase
- File: [src/inference/constants.py](src/inference/constants.py)
#### Performance Optimization Documentation
- **Created `docs/PERFORMANCE_OPTIMIZATION.md`**: Comprehensive performance guide (400+ lines)
- **Batch Processing Optimization**: Parallel processing strategies, already-implemented dual pool system
- **Database Query Optimization**: Connection pooling recommendations, index strategies
- **Caching Strategies**: Model loading cache, parser reuse (already optimal), OCR result caching
- **Memory Management**: Explicit cleanup, generator patterns, context managers
- **Profiling Guidelines**: cProfile, memory_profiler, py-spy recommendations
- **Benchmarking Scripts**: Ready-to-use performance measurement code
- **Priority Roadmap**: High/Medium/Low priority optimizations with effort estimates
- Expected impact: 2-5x throughput improvement for batch processing
- File: [docs/PERFORMANCE_OPTIMIZATION.md](docs/PERFORMANCE_OPTIMIZATION.md)
### Phase 3 Status: **COMPLETED** ✅
- [x] Configuration constants extraction ✅
- [x] Performance optimization analysis ✅
- [x] Batch processing optimization recommendations ✅
- [x] Database optimization strategies ✅
- [x] Caching and memory management guidelines ✅
- [x] Profiling and benchmarking documentation ✅
### Deliverables
**New Files** (2 files):
1. `src/inference/constants.py` (90 lines) - Centralized configuration constants
2. `docs/PERFORMANCE_OPTIMIZATION.md` (400+ lines) - Performance optimization guide
**Impact**:
- Eliminates 15+ hardcoded magic numbers
- Provides clear optimization roadmap
- Documents existing performance features
- Identifies quick wins (connection pooling, indexes)
- Long-term strategy (caching, profiling)
---
## Notes
### Breaking Changes
- **v2.x**: Requires `.env` file with database credentials
- Action required: Create `.env` file based on `.env.example`
- Affected: All deployments, CI/CD pipelines
### Migration Guide
#### From v1.x to v2.x (Environment Variables)
1. Copy `.env.example` to `.env`:
```bash
cp .env.example .env
```
2. Edit `.env` and set your database password:
```
DB_PASSWORD=your_actual_password_here
```
3. Install new dependency:
```bash
pip install python-dotenv
```
4. Verify configuration loads correctly:
```bash
python -c "import config; print('Config loaded successfully')"
```
## Summary of All Work Completed
### Files Created (13 new files)
**Phase 1** (3 files):
1. `.env` - Environment variables for database credentials
2. `.env.example` - Template for environment configuration
3. `src/exceptions.py` - Custom exception hierarchy (35 lines, 66% coverage)
**Phase 2** (7 files):
4. `src/inference/payment_line_parser.py` - Unified payment line parsing (90 lines, 92% coverage)
5. `src/inference/customer_number_parser.py` - Unified customer number parsing (154 lines, 92% coverage)
6. `tests/test_config.py` - Configuration tests (7 tests)
7. `tests/test_db_security.py` - SQL injection prevention tests (9 tests)
8. `tests/test_exceptions.py` - Exception hierarchy tests (16 tests)
9. `tests/test_payment_line_parser.py` - Payment line parser tests (23 tests)
10. `tests/test_customer_number_parser.py` - Customer number parser tests (32 tests)
**Phase 3** (2 files):
11. `src/inference/constants.py` - Centralized configuration constants (90 lines)
12. `docs/PERFORMANCE_OPTIMIZATION.md` - Performance optimization guide (400+ lines)
**Documentation** (1 file):
13. `CHANGELOG.md` - This file (260+ lines of detailed documentation)
### Files Modified (4 files)
1. `config.py` - Added environment variable loading with python-dotenv
2. `src/data/db.py` - Fixed 2 SQL injection vulnerabilities (lines 246, 298)
3. `src/inference/field_extractor.py` - Integrated new parsers (reduced 201 lines to 6 lines)
4. `src/inference/pipeline.py` - Integrated PaymentLineParser (reduced 36 lines to 6 lines)
5. `requirements.txt` - Added python-dotenv dependency
### Test Summary
- **Total tests**: 153 tests across 7 test files
- **Passing**: 153 (100%)
- **Failing**: 0
- **Runtime**: 4.50 seconds
- **Coverage**:
- New parser modules: 92%
- Config module: 100%
- Exception module: 66%
- DB security coverage: 18% (focused on parameterized queries)
### Code Metrics
- **Lines eliminated**: 237 lines of duplicated/complex code → 18 lines (92% reduction)
- field_extractor.py: 201 lines → 6 lines
- pipeline.py: 36 lines → 6 lines
- **New code added**: 279 lines of well-tested parser code
- **Net impact**: Replaced 237 lines of duplicate code with 279 lines of unified, tested code (+42 lines, but -3 implementations)
- **Test coverage improvement**: 0% → 92% for parser logic
### Performance Impact
- Configuration loading: Negligible (<1ms overhead for .env parsing)
- SQL queries: No performance change (parameterized queries are standard practice)
- Parser refactoring: No performance degradation (logic simplified, not changed)
- Exception handling: Minimal overhead (only when exceptions are raised)
### Security Improvements
- Eliminated plaintext password storage
- Fixed 2 SQL injection vulnerabilities
- Added input validation in database layer
### Maintainability Improvements
- Eliminated code duplication (3 implementations 1)
- Strategy Pattern enables easy extension of customer number formats
- Comprehensive test suite (153 tests) ensures safe refactoring
- 100% backward compatibility maintained
- Custom exception hierarchy for granular error handling

805
CODE_REVIEW_REPORT.md Normal file
View File

@@ -0,0 +1,805 @@
# Invoice Master POC v2 - 详细代码审查报告
**审查日期**: 2026-02-01
**审查人**: Claude Code
**项目路径**: `C:\Users\yaoji\git\ColaCoder\invoice-master-poc-v2`
**代码统计**:
- Python文件: 200+ 个
- 测试文件: 97 个
- TypeScript/React文件: 39 个
- 总测试数: 1,601 个
- 测试覆盖率: 28%
---
## 目录
1. [执行摘要](#执行摘要)
2. [架构概览](#架构概览)
3. [详细模块审查](#详细模块审查)
4. [代码质量问题](#代码质量问题)
5. [安全风险分析](#安全风险分析)
6. [性能问题](#性能问题)
7. [改进建议](#改进建议)
8. [总结与评分](#总结与评分)
---
## 执行摘要
### 总体评估
| 维度 | 评分 | 状态 |
|------|------|------|
| **代码质量** | 7.5/10 | 良好,但有改进空间 |
| **安全性** | 7/10 | 基础安全到位,需加强 |
| **可维护性** | 8/10 | 模块化良好 |
| **测试覆盖** | 5/10 | 偏低,需提升 |
| **性能** | 8/10 | 异步处理良好 |
| **文档** | 8/10 | 文档详尽 |
| **总体** | **7.3/10** | 生产就绪,需小幅改进 |
### 关键发现
**优势:**
- 清晰的Monorepo架构三包分离合理
- 类型注解覆盖率高(>90%
- 存储抽象层设计优秀
- FastAPI使用规范依赖注入模式良好
- 异常处理完善,自定义异常层次清晰
**风险:**
- 测试覆盖率仅28%,远低于行业标准
- AdminDB类过大50+方法),违反单一职责原则
- 内存队列存在单点故障风险
- 部分安全细节需加强(时序攻击、文件上传验证)
- 前端状态管理简单,可能难以扩展
---
## 架构概览
### 项目结构
```
invoice-master-poc-v2/
├── packages/
│ ├── shared/ # 共享库 (74个Python文件)
│ │ ├── pdf/ # PDF处理
│ │ ├── ocr/ # OCR封装
│ │ ├── normalize/ # 字段规范化
│ │ ├── matcher/ # 字段匹配
│ │ ├── storage/ # 存储抽象层
│ │ ├── training/ # 训练组件
│ │ └── augmentation/# 数据增强
│ ├── training/ # 训练服务 (26个Python文件)
│ │ ├── cli/ # 命令行工具
│ │ ├── yolo/ # YOLO数据集
│ │ └── processing/ # 任务处理
│ └── inference/ # 推理服务 (100个Python文件)
│ ├── web/ # FastAPI应用
│ ├── pipeline/ # 推理管道
│ ├── data/ # 数据层
│ └── cli/ # 命令行工具
├── frontend/ # React前端 (39个TS/TSX文件)
│ ├── src/
│ │ ├── components/ # UI组件
│ │ ├── hooks/ # React Query hooks
│ │ └── api/ # API客户端
└── tests/ # 测试 (97个Python文件)
```
### 技术栈
| 层级 | 技术 | 评估 |
|------|------|------|
| **前端** | React 18 + TypeScript + Vite + TailwindCSS | 现代栈,类型安全 |
| **API框架** | FastAPI + Uvicorn | 高性能,异步支持 |
| **数据库** | PostgreSQL + SQLModel | 类型安全ORM |
| **目标检测** | YOLOv11 (Ultralytics) | 业界标准 |
| **OCR** | PaddleOCR v5 | 支持瑞典语 |
| **部署** | Docker + Azure/AWS | 云原生 |
---
## 详细模块审查
### 1. Shared Package
#### 1.1 配置模块 (`shared/config.py`)
**文件位置**: `packages/shared/shared/config.py`
**代码行数**: 82行
**优点:**
- 使用环境变量加载配置,无硬编码敏感信息
- DPI配置统一管理DEFAULT_DPI = 150
- 密码无默认值,强制要求设置
**问题:**
```python
# 问题1: 配置分散,缺少验证
DATABASE = {
'host': os.getenv('DB_HOST', '192.168.68.31'), # 硬编码IP
'port': int(os.getenv('DB_PORT', '5432')),
# ...
}
# 问题2: 缺少类型安全
# 建议使用 Pydantic Settings
```
**严重程度**: 中
**建议**: 使用 Pydantic Settings 集中管理配置,添加验证逻辑
---
#### 1.2 存储抽象层 (`shared/storage/`)
**文件位置**: `packages/shared/shared/storage/`
**包含文件**: 8个
**优点:**
- 设计优秀的抽象接口 `StorageBackend`
- 支持 Local/Azure/S3 多后端
- 预签名URL支持
- 异常层次清晰
**代码示例 - 优秀设计:**
```python
class StorageBackend(ABC):
@abstractmethod
def upload(self, local_path: Path, remote_path: str, overwrite: bool = False) -> str:
pass
@abstractmethod
def get_presigned_url(self, remote_path: str, expires_in_seconds: int = 3600) -> str:
pass
```
**问题:**
- `upload_bytes``download_bytes` 默认实现使用临时文件,效率较低
- 缺少文件类型验证(魔术字节检查)
**严重程度**: 低
**建议**: 子类可重写bytes方法以提高效率添加文件类型验证
---
#### 1.3 异常定义 (`shared/exceptions.py`)
**文件位置**: `packages/shared/shared/exceptions.py`
**代码行数**: 103行
**优点:**
- 清晰的异常层次结构
- 所有异常继承自 `InvoiceExtractionError`
- 包含详细的错误上下文
**代码示例:**
```python
class InvoiceExtractionError(Exception):
def __init__(self, message: str, details: dict = None):
super().__init__(message)
self.message = message
self.details = details or {}
```
**评分**: 9/10 - 设计优秀
---
#### 1.4 数据增强 (`shared/augmentation/`)
**文件位置**: `packages/shared/shared/augmentation/`
**包含文件**: 10个
**功能:**
- 12种数据增强策略
- 透视变换、皱纹、边缘损坏、污渍等
- 高斯模糊、运动模糊、噪声等
**代码质量**: 良好,模块化设计
---
### 2. Inference Package
#### 2.1 认证模块 (`inference/web/core/auth.py`)
**文件位置**: `packages/inference/inference/web/core/auth.py`
**代码行数**: 61行
**优点:**
- 使用FastAPI依赖注入模式
- Token过期检查
- 记录最后使用时间
**安全问题:**
```python
# 问题: 时序攻击风险 (第46行)
if not admin_db.is_valid_admin_token(x_admin_token):
raise HTTPException(status_code=401, detail="Invalid or expired admin token.")
# 建议: 使用 constant-time 比较
import hmac
if not hmac.compare_digest(token, expected_token):
raise HTTPException(status_code=401, ...)
```
**严重程度**: 中
**建议**: 使用 `hmac.compare_digest()` 进行constant-time比较
---
#### 2.2 限流器 (`inference/web/core/rate_limiter.py`)
**文件位置**: `packages/inference/inference/web/core/rate_limiter.py`
**代码行数**: 212行
**优点:**
- 滑动窗口算法实现
- 线程安全使用Lock
- 支持并发任务限制
- 可配置的限流策略
**代码示例 - 优秀设计:**
```python
@dataclass(frozen=True)
class RateLimitConfig:
requests_per_minute: int = 10
max_concurrent_jobs: int = 3
min_poll_interval_ms: int = 1000
```
**问题:**
- 内存存储,服务重启后限流状态丢失
- 分布式部署时无法共享限流状态
**严重程度**: 中
**建议**: 生产环境使用Redis实现分布式限流
---
#### 2.3 AdminDB (`inference/data/admin_db.py`)
**文件位置**: `packages/inference/inference/data/admin_db.py`
**代码行数**: 1300+行
**严重问题 - 类过大:**
```python
class AdminDB:
# Token管理 (5个方法)
# 文档管理 (8个方法)
# 标注管理 (6个方法)
# 训练任务 (7个方法)
# 数据集 (6个方法)
# 模型版本 (5个方法)
# 批处理 (4个方法)
# 锁管理 (3个方法)
# ... 总计50+方法
```
**影响:**
- 违反单一职责原则
- 难以维护
- 测试困难
- 不同领域变更互相影响
**严重程度**: 高
**建议**: 按领域拆分为Repository模式
```python
# 建议重构
class TokenRepository:
def validate(self, token: str) -> bool: ...
class DocumentRepository:
def find_by_id(self, doc_id: str) -> Document | None: ...
class TrainingRepository:
def create_task(self, config: TrainingConfig) -> TrainingTask: ...
```
---
#### 2.4 文档路由 (`inference/web/api/v1/admin/documents.py`)
**文件位置**: `packages/inference/inference/web/api/v1/admin/documents.py`
**代码行数**: 692行
**优点:**
- FastAPI使用规范
- 输入验证完善
- 响应模型定义清晰
- 错误处理良好
**问题:**
```python
# 问题1: 文件上传缺少魔术字节验证 (第127-131行)
content = await file.read()
# 建议: 验证PDF魔术字节 %PDF
# 问题2: 路径遍历风险 (第494-498行)
filename = Path(document.file_path).name
# 建议: 使用 Path.name 并验证路径范围
# 问题3: 函数过长,职责过多
# _convert_pdf_to_images 函数混合了PDF处理和存储操作
```
**严重程度**: 中
**建议**: 添加文件类型验证,拆分大函数
---
#### 2.5 推理服务 (`inference/web/services/inference.py`)
**文件位置**: `packages/inference/inference/web/services/inference.py`
**代码行数**: 361行
**优点:**
- 支持动态模型加载
- 懒加载初始化
- 模型热重载支持
**问题:**
```python
# 问题1: 混合业务逻辑和技术实现
def process_image(self, image_path: Path, ...) -> ServiceResult:
# 1. 技术细节: 图像解码
# 2. 业务逻辑: 字段提取
# 3. 技术细节: 模型推理
# 4. 业务逻辑: 结果验证
# 问题2: 可视化方法重复加载模型
model = YOLO(str(self.model_config.model_path)) # 第316行
# 应该在初始化时加载避免重复IO
# 问题3: 临时文件未使用上下文管理器
temp_path = results_dir / f"{doc_id}_temp.png"
# 建议使用 tempfile 上下文管理器
```
**严重程度**: 中
**建议**: 引入领域层和适配器模式,分离业务和技术逻辑
---
#### 2.6 异步队列 (`inference/web/workers/async_queue.py`)
**文件位置**: `packages/inference/inference/web/workers/async_queue.py`
**代码行数**: 213行
**优点:**
- 线程安全实现
- 优雅关闭支持
- 任务状态跟踪
**严重问题:**
```python
# 问题: 内存队列,服务重启丢失任务 (第42行)
self._queue: Queue[AsyncTask] = Queue(maxsize=max_size)
# 问题: 无法水平扩展
# 问题: 任务持久化困难
```
**严重程度**: 高
**建议**: 使用Redis/RabbitMQ持久化队列
---
### 3. Training Package
#### 3.1 整体评估
**文件数量**: 26个Python文件
**优点:**
- CLI工具设计良好
- 双池协调器CPU + GPU设计优秀
- 数据增强策略丰富
**总体评分**: 8/10
---
### 4. Frontend
#### 4.1 API客户端 (`frontend/src/api/client.ts`)
**文件位置**: `frontend/src/api/client.ts`
**代码行数**: 42行
**优点:**
- Axios配置清晰
- 请求/响应拦截器
- 认证token自动添加
**问题:**
```typescript
// 问题1: Token存储在localStorage存在XSS风险
const token = localStorage.getItem('admin_token')
// 问题2: 401错误处理不完整
if (error.response?.status === 401) {
console.warn('Authentication required...')
// 应该触发重新登录或token刷新
}
```
**严重程度**: 中
**建议**: 考虑使用http-only cookie存储token完善错误处理
---
#### 4.2 Dashboard组件 (`frontend/src/components/Dashboard.tsx`)
**文件位置**: `frontend/src/components/Dashboard.tsx`
**代码行数**: 301行
**优点:**
- React hooks使用规范
- 类型定义清晰
- UI响应式设计
**问题:**
```typescript
// 问题1: 硬编码的进度值
const getAutoLabelProgress = (doc: DocumentItem): number | undefined => {
if (doc.auto_label_status === 'running') {
return 45 // 硬编码!
}
// ...
}
// 问题2: 搜索功能未实现
// 没有onChange处理
// 问题3: 缺少错误边界处理
// 组件应该包裹在Error Boundary中
```
**严重程度**: 低
**建议**: 实现真实的进度获取,添加搜索功能
---
#### 4.3 整体评估
**优点:**
- TypeScript类型安全
- React Query状态管理
- TailwindCSS样式一致
**问题:**
- 缺少错误边界
- 部分功能硬编码
- 缺少单元测试
**总体评分**: 7.5/10
---
### 5. Tests
#### 5.1 测试统计
- **测试文件数**: 97个
- **测试总数**: 1,601个
- **测试覆盖率**: 28%
#### 5.2 覆盖率分析
| 模块 | 估计覆盖率 | 状态 |
|------|-----------|------|
| `shared/` | 35% | 偏低 |
| `inference/web/` | 25% | 偏低 |
| `inference/pipeline/` | 20% | 严重不足 |
| `training/` | 30% | 偏低 |
| `frontend/` | 15% | 严重不足 |
#### 5.3 测试质量问题
**优点:**
- 使用了pytest框架
- 有conftest.py配置
- 部分集成测试
**问题:**
- 覆盖率远低于行业标准80%
- 缺少端到端测试
- 部分测试可能过于简单
**严重程度**: 高
**建议**: 制定测试计划,优先覆盖核心业务逻辑
---
## 代码质量问题
### 高优先级问题
| 问题 | 位置 | 影响 | 建议 |
|------|------|------|------|
| AdminDB类过大 | `inference/data/admin_db.py` | 维护困难 | 拆分为Repository模式 |
| 内存队列单点故障 | `inference/web/workers/async_queue.py` | 任务丢失 | 使用Redis持久化 |
| 测试覆盖率过低 | 全项目 | 代码风险 | 提升至60%+ |
### 中优先级问题
| 问题 | 位置 | 影响 | 建议 |
|------|------|------|------|
| 时序攻击风险 | `inference/web/core/auth.py` | 安全漏洞 | 使用hmac.compare_digest |
| 限流器内存存储 | `inference/web/core/rate_limiter.py` | 分布式问题 | 使用Redis |
| 配置分散 | `shared/config.py` | 难以管理 | 使用Pydantic Settings |
| 文件上传验证不足 | `inference/web/api/v1/admin/documents.py` | 安全风险 | 添加魔术字节验证 |
| 推理服务混合职责 | `inference/web/services/inference.py` | 难以测试 | 分离业务和技术逻辑 |
### 低优先级问题
| 问题 | 位置 | 影响 | 建议 |
|------|------|------|------|
| 前端搜索未实现 | `frontend/src/components/Dashboard.tsx` | 功能缺失 | 实现搜索功能 |
| 硬编码进度值 | `frontend/src/components/Dashboard.tsx` | 用户体验 | 获取真实进度 |
| Token存储方式 | `frontend/src/api/client.ts` | XSS风险 | 考虑http-only cookie |
---
## 安全风险分析
### 已识别的安全风险
#### 1. 时序攻击 (中风险)
**位置**: `inference/web/core/auth.py:46`
```python
# 当前实现(有风险)
if not admin_db.is_valid_admin_token(x_admin_token):
raise HTTPException(status_code=401, ...)
# 安全实现
import hmac
if not hmac.compare_digest(token, expected_token):
raise HTTPException(status_code=401, ...)
```
#### 2. 文件上传验证不足 (中风险)
**位置**: `inference/web/api/v1/admin/documents.py:127-131`
```python
# 建议添加魔术字节验证
ALLOWED_EXTENSIONS = {".pdf"}
MAX_FILE_SIZE = 10 * 1024 * 1024
if not content.startswith(b"%PDF"):
raise HTTPException(400, "Invalid PDF file format")
```
#### 3. 路径遍历风险 (中风险)
**位置**: `inference/web/api/v1/admin/documents.py:494-498`
```python
# 建议实现
from pathlib import Path
def get_safe_path(filename: str, base_dir: Path) -> Path:
safe_name = Path(filename).name
full_path = (base_dir / safe_name).resolve()
if not full_path.is_relative_to(base_dir):
raise HTTPException(400, "Invalid file path")
return full_path
```
#### 4. CORS配置 (低风险)
**位置**: FastAPI中间件配置
```python
# 建议生产环境配置
ALLOWED_ORIGINS = [
"http://localhost:5173",
"https://your-domain.com",
]
```
#### 5. XSS风险 (低风险)
**位置**: `frontend/src/api/client.ts:13`
```typescript
// 当前实现
const token = localStorage.getItem('admin_token')
// 建议考虑
// 使用http-only cookie存储敏感token
```
### 安全评分
| 类别 | 评分 | 说明 |
|------|------|------|
| 认证 | 8/10 | 基础良好,需加强时序攻击防护 |
| 输入验证 | 7/10 | 基本验证到位,需加强文件验证 |
| 数据保护 | 8/10 | 无敏感信息硬编码 |
| 传输安全 | 8/10 | 使用HTTPS生产环境 |
| 总体 | 7.5/10 | 基础安全良好,需加强细节 |
---
## 性能问题
### 已识别的性能问题
#### 1. 重复模型加载
**位置**: `inference/web/services/inference.py:316`
```python
# 问题: 每次可视化都重新加载模型
model = YOLO(str(self.model_config.model_path))
# 建议: 复用已加载的模型
```
#### 2. 临时文件处理
**位置**: `shared/storage/base.py:178-203`
```python
# 问题: bytes操作使用临时文件
def upload_bytes(self, data: bytes, ...):
with tempfile.NamedTemporaryFile(delete=False) as f:
f.write(data)
temp_path = Path(f.name)
# ...
# 建议: 子类重写为直接上传
```
#### 3. 数据库查询优化
**位置**: `inference/data/admin_db.py`
```python
# 问题: N+1查询风险
for doc in documents:
annotations = db.get_annotations_for_document(str(doc.document_id))
# ...
# 建议: 使用join预加载
```
### 性能评分
| 类别 | 评分 | 说明 |
|------|------|------|
| 响应时间 | 8/10 | 异步处理良好 |
| 资源使用 | 7/10 | 有优化空间 |
| 可扩展性 | 7/10 | 内存队列限制 |
| 并发处理 | 8/10 | 线程池设计良好 |
| 总体 | 7.5/10 | 良好,有优化空间 |
---
## 改进建议
### 立即执行 (本周)
1. **拆分AdminDB**
- 创建 `repositories/` 目录
- 按领域拆分TokenRepository, DocumentRepository, TrainingRepository
- 估计工时: 2天
2. **修复安全漏洞**
- 添加 `hmac.compare_digest()` 时序攻击防护
- 添加文件魔术字节验证
- 估计工时: 0.5天
3. **提升测试覆盖率**
- 优先测试 `inference/pipeline/`
- 添加API集成测试
- 目标: 从28%提升至50%
- 估计工时: 3天
### 短期执行 (本月)
4. **引入消息队列**
- 添加Redis服务
- 使用Celery替换内存队列
- 估计工时: 3天
5. **统一配置管理**
- 使用 Pydantic Settings
- 集中验证逻辑
- 估计工时: 1天
6. **添加缓存层**
- Redis缓存热点数据
- 缓存文档、模型配置
- 估计工时: 2天
### 长期执行 (本季度)
7. **数据库读写分离**
- 配置主从数据库
- 读操作使用从库
- 估计工时: 3天
8. **事件驱动架构**
- 引入事件总线
- 解耦模块依赖
- 估计工时: 5天
9. **前端优化**
- 添加错误边界
- 实现真实搜索功能
- 添加E2E测试
- 估计工时: 3天
---
## 总结与评分
### 各维度评分
| 维度 | 评分 | 权重 | 加权得分 |
|------|------|------|----------|
| **代码质量** | 7.5/10 | 20% | 1.5 |
| **安全性** | 7.5/10 | 20% | 1.5 |
| **可维护性** | 8/10 | 15% | 1.2 |
| **测试覆盖** | 5/10 | 15% | 0.75 |
| **性能** | 7.5/10 | 15% | 1.125 |
| **文档** | 8/10 | 10% | 0.8 |
| **架构设计** | 8/10 | 5% | 0.4 |
| **总体** | **7.3/10** | 100% | **7.275** |
### 关键结论
1. **架构设计优秀**: Monorepo + 三包分离架构清晰,便于维护和扩展
2. **代码质量良好**: 类型注解完善,文档详尽,结构清晰
3. **安全基础良好**: 没有严重的安全漏洞,基础防护到位
4. **测试是短板**: 28%覆盖率是最大风险点
5. **生产就绪**: 经过小幅改进后可以投入生产使用
### 下一步行动
| 优先级 | 任务 | 预计工时 | 影响 |
|--------|------|----------|------|
| 高 | 拆分AdminDB | 2天 | 提升可维护性 |
| 高 | 引入Redis队列 | 3天 | 解决任务丢失问题 |
| 高 | 提升测试覆盖率 | 5天 | 降低代码风险 |
| 中 | 修复安全漏洞 | 0.5天 | 提升安全性 |
| 中 | 统一配置管理 | 1天 | 减少配置错误 |
| 低 | 前端优化 | 3天 | 提升用户体验 |
---
## 附录
### 关键文件清单
| 文件 | 职责 | 问题 |
|------|------|------|
| `inference/data/admin_db.py` | 数据库操作 | 类过大,需拆分 |
| `inference/web/services/inference.py` | 推理服务 | 混合业务和技术 |
| `inference/web/workers/async_queue.py` | 异步队列 | 内存存储,易丢失 |
| `inference/web/core/scheduler.py` | 任务调度 | 缺少统一协调 |
| `shared/shared/config.py` | 共享配置 | 分散管理 |
### 参考资源
- [Repository Pattern](https://martinfowler.com/eaaCatalog/repository.html)
- [Celery Documentation](https://docs.celeryproject.org/)
- [Pydantic Settings](https://docs.pydantic.dev/latest/concepts/pydantic_settings/)
- [FastAPI Best Practices](https://fastapi.tiangolo.com/tutorial/bigger-applications/)
- [OWASP Top 10](https://owasp.org/www-project-top-ten/)
---
**报告生成时间**: 2026-02-01
**审查工具**: Claude Code + AST-grep + LSP

View File

@@ -0,0 +1,637 @@
# Invoice Master POC v2 - 商业化分析报告
**报告日期**: 2026-02-01
**分析人**: Claude Code
**项目**: Invoice Master - 瑞典发票字段自动提取系统
**当前状态**: POC阶段已处理9,738份文档字段匹配率94.8%
---
## 目录
1. [执行摘要](#执行摘要)
2. [市场分析](#市场分析)
3. [商业模式建议](#商业模式建议)
4. [技术架构商业化评估](#技术架构商业化评估)
5. [商业化路线图](#商业化路线图)
6. [风险与挑战](#风险与挑战)
7. [成本与定价策略](#成本与定价策略)
8. [竞争分析](#竞争分析)
9. [改进建议](#改进建议)
10. [总结与建议](#总结与建议)
---
## 执行摘要
### 项目现状
Invoice Master是一个基于YOLOv11 + PaddleOCR的瑞典发票字段自动提取系统具备以下核心能力
| 指标 | 数值 | 评估 |
|------|------|------|
| 已处理文档 | 9,738份 | 数据基础良好 |
| 字段匹配率 | 94.8% | 接近商业化标准 |
| 模型mAP@0.5 | 93.5% | 业界优秀水平 |
| 测试覆盖率 | 28% | 需大幅提升 |
| 架构成熟度 | 7.3/10 | 基本就绪 |
### 商业化可行性评估
| 维度 | 评分 | 说明 |
|------|------|------|
| **技术成熟度** | 7.5/10 | 核心算法成熟,需完善工程化 |
| **市场需求** | 8/10 | 发票处理是刚需市场 |
| **竞争壁垒** | 6/10 | 技术可替代,需构建数据壁垒 |
| **商业化就绪度** | 6.5/10 | 需完成产品化和合规准备 |
| **总体评估** | **7/10** | **具备商业化潜力需6-12个月准备** |
### 关键建议
1. **短期3个月**: 提升测试覆盖率至80%,完成安全加固
2. **中期6个月**: 推出MVP产品获取首批付费客户
3. **长期12个月**: 扩展多语言支持,进入国际市场
---
## 市场分析
### 目标市场
#### 1.1 市场规模
**全球发票处理市场**
- 市场规模: ~$30B (2024)
- 年增长率: 12-15%
- 驱动因素: 数字化转型、合规要求、成本节约
**瑞典/北欧市场**
- 中小企业数量: ~100万+
- 大型企业: ~2,000家
- 年发票处理量: ~5亿张
- 市场特点: 数字化程度高,合规要求严格
#### 1.2 目标客户画像
| 客户类型 | 规模 | 痛点 | 付费意愿 | 获取难度 |
|----------|------|------|----------|----------|
| **中小企业** | 10-100人 | 手动录入耗时 | 中 | 低 |
| **会计事务所** | 5-50人 | 批量处理需求 | 高 | 中 |
| **大型企业** | 500+人 | 系统集成需求 | 高 | 高 |
| **SaaS平台** | - | API集成需求 | 中 | 中 |
### 市场需求验证
#### 2.1 痛点分析
**现有解决方案的问题:**
1. **传统OCR**: 准确率70-85%,需要大量人工校对
2. **人工录入**: 成本高($0.5-2/张),速度慢,易出错
3. **现有AI方案**: 价格昂贵,定制化程度低
**Invoice Master的优势:**
- 准确率94.8%,接近人工水平
- 支持瑞典特有的字段(OCR参考号、Bankgiro/Plusgiro)
- 可定制化训练,适应不同发票格式
#### 2.2 市场进入策略
**第一阶段: 瑞典市场验证**
- 目标客户: 中型会计事务所
- 价值主张: 减少80%人工录入时间
- 定价: $0.1-0.2/张 或 $99-299/月
**第二阶段: 北欧扩展**
- 扩展至挪威、丹麦、芬兰
- 适配各国发票格式
- 建立本地合作伙伴网络
**第三阶段: 欧洲市场**
- 支持多语言(德语、法语、英语)
- GDPR合规认证
- 与主流ERP系统集成
---
## 商业模式建议
### 3.1 商业模式选项
#### 选项A: SaaS订阅模式 (推荐)
**定价结构:**
```
Starter: $99/月
- 500张发票/月
- 基础字段提取
- 邮件支持
Professional: $299/月
- 2,000张发票/月
- 所有字段+自定义字段
- API访问
- 优先支持
Enterprise: 定制报价
- 无限发票
- 私有部署选项
- SLA保障
- 专属客户经理
```
**优势:**
- 可预测的经常性收入
- 客户生命周期价值高
- 易于扩展
**劣势:**
- 需要持续的产品迭代
- 客户获取成本较高
#### 选项B: 按量付费模式
**定价:**
- 前100张: $0.15/张
- 101-1000张: $0.10/张
- 1001+张: $0.05/张
**适用场景:**
- 季节性业务
- 初创企业
- 不确定使用量的客户
#### 选项C: 授权许可模式
**定价:**
- 年度许可: $10,000-50,000
- 按部署规模收费
- 包含培训和定制开发
**适用场景:**
- 大型企业
- 数据敏感行业
- 需要私有部署的客户
### 3.2 推荐模式: 混合模式
**核心产品: SaaS订阅**
- 面向中小企业和会计事务所
- 标准化产品,快速交付
**增值服务: 定制开发**
- 面向大型企业
- 私有部署选项
- 按项目收费
**API服务: 按量付费**
- 面向SaaS平台和开发者
- 开发者友好定价
### 3.3 收入预测
**保守估计 (第一年)**
| 客户类型 | 客户数 | ARPU | MRR | 年收入 |
|----------|--------|------|-----|--------|
| Starter | 20 | $99 | $1,980 | $23,760 |
| Professional | 10 | $299 | $2,990 | $35,880 |
| Enterprise | 2 | $2,000 | $4,000 | $48,000 |
| **总计** | **32** | - | **$8,970** | **$107,640** |
**乐观估计 (第一年)**
- 客户数: 100+
- 年收入: $300,000-500,000
---
## 技术架构商业化评估
### 4.1 架构优势
| 优势 | 说明 | 商业化价值 |
|------|------|-----------|
| **Monorepo结构** | 代码组织清晰 | 降低维护成本 |
| **云原生架构** | 支持AWS/Azure | 灵活部署选项 |
| **存储抽象层** | 支持多后端 | 满足不同客户需求 |
| **模型版本管理** | 可追溯可回滚 | 企业级可靠性 |
| **API优先设计** | RESTful API | 易于集成和扩展 |
### 4.2 商业化就绪度评估
#### 高优先级改进项
| 问题 | 影响 | 改进建议 | 工时 |
|------|------|----------|------|
| **测试覆盖率28%** | 质量风险 | 提升至80%+ | 4周 |
| **AdminDB过大** | 维护困难 | 拆分Repository | 2周 |
| **内存队列** | 单点故障 | 引入Redis | 2周 |
| **安全漏洞** | 合规风险 | 修复时序攻击等 | 1周 |
#### 中优先级改进项
| 问题 | 影响 | 改进建议 | 工时 |
|------|------|----------|------|
| **缺少审计日志** | 合规要求 | 添加完整审计 | 2周 |
| **无多租户隔离** | 数据安全 | 实现租户隔离 | 3周 |
| **限流器内存存储** | 扩展性 | Redis分布式限流 | 1周 |
| **配置分散** | 运维难度 | 统一配置中心 | 1周 |
### 4.3 技术债务清理计划
**阶段1: 基础加固 (4周)**
- 提升测试覆盖率至60%
- 修复安全漏洞
- 添加基础监控
**阶段2: 架构优化 (6周)**
- 拆分AdminDB
- 引入消息队列
- 实现多租户支持
**阶段3: 企业级功能 (8周)**
- 完整审计日志
- SSO集成
- 高级权限管理
---
## 商业化路线图
### 5.1 时间线规划
```
Month 1-3: 产品化准备
├── 技术债务清理
├── 安全加固
├── 测试覆盖率提升
└── 文档完善
Month 4-6: MVP发布
├── 核心功能稳定
├── 基础监控告警
├── 客户反馈收集
└── 定价策略验证
Month 7-9: 市场扩展
├── 销售团队组建
├── 合作伙伴网络
├── 案例研究制作
└── 营销自动化
Month 10-12: 规模化
├── 多语言支持
├── 高级功能开发
├── 国际市场准备
└── 融资准备
```
### 5.2 里程碑
| 里程碑 | 时间 | 成功标准 |
|--------|------|----------|
| **技术就绪** | M3 | 测试80%,零高危漏洞 |
| **首个付费客户** | M4 | 签约并上线 |
| **产品市场契合** | M6 | 10+付费客户NPS>40 |
| **盈亏平衡** | M9 | MRR覆盖运营成本 |
| **规模化准备** | M12 | 100+客户,$50K+MRR |
### 5.3 团队组建建议
**核心团队 (前6个月)**
| 角色 | 人数 | 职责 |
|------|------|------|
| 技术负责人 | 1 | 架构、技术决策 |
| 全栈工程师 | 2 | 产品开发 |
| ML工程师 | 1 | 模型优化 |
| 产品经理 | 1 | 产品规划 |
| 销售/BD | 1 | 客户获取 |
**扩展团队 (6-12个月)**
| 角色 | 人数 | 职责 |
|------|------|------|
| 客户成功 | 1 | 客户留存 |
| 市场营销 | 1 | 品牌建设 |
| 技术支持 | 1 | 客户支持 |
---
## 风险与挑战
### 6.1 技术风险
| 风险 | 概率 | 影响 | 缓解措施 |
|------|------|------|----------|
| **模型准确率下降** | 中 | 高 | 持续训练A/B测试 |
| **系统稳定性** | 中 | 高 | 完善监控,灰度发布 |
| **数据安全漏洞** | 低 | 高 | 安全审计,渗透测试 |
| **扩展性瓶颈** | 中 | 中 | 架构优化,负载测试 |
### 6.2 市场风险
| 风险 | 概率 | 影响 | 缓解措施 |
|------|------|------|----------|
| **竞争加剧** | 高 | 中 | 差异化定位,垂直深耕 |
| **价格战** | 中 | 中 | 价值定价,增值服务 |
| **客户获取困难** | 中 | 高 | 内容营销,口碑传播 |
| **市场教育成本** | 中 | 中 | 免费试用,案例展示 |
### 6.3 合规风险
| 风险 | 概率 | 影响 | 缓解措施 |
|------|------|------|----------|
| **GDPR合规** | 高 | 高 | 隐私设计,数据本地化 |
| **数据主权** | 中 | 高 | 多区域部署选项 |
| **行业认证** | 中 | 中 | ISO27001, SOC2准备 |
### 6.4 财务风险
| 风险 | 概率 | 影响 | 缓解措施 |
|------|------|------|----------|
| **现金流紧张** | 中 | 高 | 预付费模式,成本控制 |
| **客户流失** | 中 | 中 | 客户成功,年度合同 |
| **定价失误** | 中 | 中 | 灵活定价,快速迭代 |
---
## 成本与定价策略
### 7.1 运营成本估算
**月度运营成本 (AWS)**
| 项目 | 成本 | 说明 |
|------|------|------|
| 计算 (ECS Fargate) | $150 | 推理服务 |
| 数据库 (RDS) | $50 | PostgreSQL |
| 存储 (S3) | $20 | 文档和模型 |
| 训练 (SageMaker) | $100 | 按需训练 |
| 监控/日志 | $30 | CloudWatch等 |
| **小计** | **$350** | **基础运营成本** |
**月度运营成本 (Azure)**
| 项目 | 成本 | 说明 |
|------|------|------|
| 计算 (Container Apps) | $180 | 推理服务 |
| 数据库 | $60 | PostgreSQL |
| 存储 | $25 | Blob Storage |
| 训练 | $120 | Azure ML |
| **小计** | **$385** | **基础运营成本** |
**人力成本 (月度)**
| 阶段 | 人数 | 成本 |
|------|------|------|
| 启动期 (1-3月) | 3 | $15,000 |
| 成长期 (4-9月) | 5 | $25,000 |
| 规模化 (10-12月) | 7 | $35,000 |
### 7.2 定价策略
**成本加成定价**
- 基础成本: $350/月
- 目标毛利率: 70%
- 最低收费: $1,000/月
**价值定价**
- 客户节省成本: $2-5/张 (人工录入)
- 收费: $0.1-0.2/张
- 客户ROI: 10-50x
**竞争定价**
- 竞争对手: $0.2-0.5/张
- 我们的定价: $0.1-0.15/张
- 策略: 高性价比切入
### 7.3 盈亏平衡分析
**固定成本: $25,000/月** (人力+基础设施)
**盈亏平衡点:**
- 按订阅模式: 85个Professional客户 或 250个Starter客户
- 按量付费: 250,000张发票/月
**目标 (12个月):**
- MRR: $50,000
- 客户数: 150
- 毛利率: 75%
---
## 竞争分析
### 8.1 竞争对手
#### 直接竞争对手
| 公司 | 产品 | 优势 | 劣势 | 定价 |
|------|------|------|------|------|
| **Rossum** | AI发票处理 | 技术成熟,欧洲市场强 | 价格高 | $0.3-0.5/张 |
| **Hypatos** | 文档AI | 德国市场深耕 | 定制化弱 | 定制报价 |
| **Klippa** | 文档解析 | API友好 | 准确率一般 | $0.1-0.2/张 |
| **Nanonets** | 工作流自动化 | 易用性好 | 发票专业性弱 | $0.05-0.15/张 |
#### 间接竞争对手
| 类型 | 代表 | 威胁程度 |
|------|------|----------|
| **传统OCR** | ABBYY, Tesseract | 中 |
| **ERP内置** | SAP, Oracle | 中 |
| **会计软件** | Visma, Fortnox | 高 |
### 8.2 竞争优势
**短期优势 (6-12个月)**
1. **瑞典市场专注**: 本地化字段支持
2. **价格优势**: 比Rossum便宜50%+
3. **定制化**: 可训练专属模型
**长期优势 (1-3年)**
1. **数据壁垒**: 训练数据积累
2. **行业深度**: 垂直行业解决方案
3. **生态集成**: 与主流ERP深度集成
### 8.3 竞争策略
**差异化定位**
- 不做通用文档处理,专注发票领域
- 不做全球市场,先做透北欧
- 不做低价竞争,做高性价比
**护城河构建**
1. **数据壁垒**: 客户发票数据训练
2. **转换成本**: 系统集成和工作流
3. **网络效应**: 行业模板共享
---
## 改进建议
### 9.1 产品改进
#### 高优先级
| 改进项 | 说明 | 商业价值 | 工时 |
|--------|------|----------|------|
| **多语言支持** | 英语、德语、法语 | 扩大市场 | 4周 |
| **批量处理API** | 支持千级批量 | 大客户必需 | 2周 |
| **实时处理** | <3秒响应 | 用户体验 | 2周 |
| **置信度阈值** | 用户可配置 | 灵活性 | 1周 |
#### 中优先级
| 改进项 | 说明 | 商业价值 | 工时 |
|--------|------|----------|------|
| **移动端适配** | 手机拍照上传 | 便利性 | 3周 |
| **PDF预览** | 在线查看和标注 | 用户体验 | 2周 |
| **导出格式** | Excel, JSON, XML | 集成便利 | 1周 |
| **Webhook** | 事件通知 | 自动化 | 1周 |
### 9.2 技术改进
#### 架构优化
```
当前架构问题:
├── 内存队列 → 改为Redis队列
├── 单体DB → 读写分离
├── 同步处理 → 异步优先
└── 单区域 → 多区域部署
```
#### 性能优化
| 优化项 | 当前 | 目标 | 方法 |
|--------|------|------|------|
| 推理延迟 | 500ms | 200ms | 模型量化 |
| 并发处理 | 10 QPS | 100 QPS | 水平扩展 |
| 系统可用性 | 99% | 99.9% | 冗余设计 |
### 9.3 运营改进
#### 客户成功
- 入职流程: 30分钟完成首次提取
- 培训材料: 视频教程+文档
- 支持响应: <4小时响应时间
- 客户健康度: 自动监控和预警
#### 销售流程
1. **线索获取**: 内容营销+SEO
2. **试用转化**: 14天免费试用
3. **付费转化**: 客户成功跟进
4. **扩展销售**: 功能升级推荐
---
## 总结与建议
### 10.1 商业化可行性结论
**总体评估: 可行需6-12个月准备**
Invoice Master具备商业化的技术基础和市场机会但需要完成以下关键准备
1. **技术债务清理**: 测试覆盖率安全加固
2. **产品化完善**: 多租户审计日志监控
3. **市场验证**: 获取首批付费客户
4. **团队组建**: 销售和客户成功团队
### 10.2 关键成功因素
| 因素 | 重要性 | 当前状态 | 行动计划 |
|------|--------|----------|----------|
| **技术稳定性** | | | 测试+监控 |
| **客户获取** | | | 内容营销 |
| **产品市场契合** | | 未验证 | 快速迭代 |
| **团队能力** | | | 招聘培训 |
| **资金储备** | | 未知 | 融资准备 |
### 10.3 行动计划
#### 立即执行 (本月)
- [ ] 制定详细的技术债务清理计划
- [ ] 启动安全审计和漏洞修复
- [ ] 设计多租户架构方案
- [ ] 准备融资材料或预算规划
#### 短期目标 (3个月)
- [ ] 测试覆盖率提升至80%
- [ ] 完成安全加固和合规准备
- [ ] 发布Beta版本给5-10个试用客户
- [ ] 确定最终定价策略
#### 中期目标 (6个月)
- [ ] 获得10+付费客户
- [ ] MRR达到$10,000
- [ ] 完成产品市场契合验证
- [ ] 组建完整团队
#### 长期目标 (12个月)
- [ ] 100+付费客户
- [ ] MRR达到$50,000
- [ ] 扩展到2-3个新市场
- [ ] 完成A轮融资或实现盈利
### 10.4 最终建议
**建议: 继续推进商业化,但需谨慎执行**
Invoice Master是一个技术扎实市场机会明确的项目当前94.8%的准确率已经接近商业化标准但需要投入资源完成工程化和产品化
**关键决策点:**
1. **是否投入商业化**: 但分阶段投入
2. **目标市场**: 先做透瑞典再扩展北欧
3. **商业模式**: SaaS订阅为主定制为辅
4. **融资需求**: 建议准备$200K-500K种子资金
**成功概率评估: 65%**
- 技术可行性: 80%
- 市场接受度: 70%
- 执行能力: 60%
- 竞争环境: 50%
---
## 附录
### A. 关键指标追踪
| 指标 | 当前 | 3个月目标 | 6个月目标 | 12个月目标 |
|------|------|-----------|-----------|------------|
| 测试覆盖率 | 28% | 60% | 80% | 85% |
| 系统可用性 | - | 99.5% | 99.9% | 99.95% |
| 客户数 | 0 | 5 | 20 | 150 |
| MRR | $0 | $500 | $10,000 | $50,000 |
| NPS | - | - | >40 | >50 |
| 客户流失率 | - | - | <5%/ | <3%/ |
### B. 资源需求
**资金需求**
| 阶段 | 时间 | 金额 | 用途 |
|------|------|------|------|
| 种子期 | 0-6月 | $100K | 团队+基础设施 |
| 成长期 | 6-12月 | $300K | 市场+团队扩展 |
| A轮 | 12-18月 | $1M+ | 规模化+国际 |
**人力需求**
| 阶段 | 团队规模 | 关键角色 |
|------|----------|----------|
| 启动 | 3-4人 | 技术+产品+销售 |
| 验证 | 5-6人 | +客户成功 |
| 增长 | 8-10人 | +市场+技术支持 |
### C. 参考资源
- [SaaS Metrics Guide](https://www.saasmetrics.co/)
- [GDPR Compliance Checklist](https://gdpr.eu/checklist/)
- [B2B SaaS Pricing Guide](https://www.priceintelligently.com/)
- [Nordic Startup Ecosystem](https://www.nordicstartupnews.com/)
---
**报告完成日期**: 2026-02-01
**下次评审日期**: 2026-03-01
**版本**: v1.0

419
PROJECT_REVIEW.md Normal file
View File

@@ -0,0 +1,419 @@
# Invoice Master POC v2 - 项目审查报告
**审查日期**: 2026-02-01
**审查人**: Claude Code
**项目路径**: `/Users/yiukai/Documents/git/invoice-master-poc-v2`
---
## 项目概述
**Invoice Master POC v2** - 基于 YOLOv11 + PaddleOCR 的瑞典发票字段自动提取系统
### 核心功能
- **自动标注**: 利用 CSV 结构化数据 + OCR 自动生成 YOLO 训练标注
- **模型训练**: 使用 YOLOv11 训练字段检测模型,支持数据增强
- **推理提取**: 检测字段区域 → OCR 提取文本 → 字段规范化
- **Web 管理**: React 前端 + FastAPI 后端,支持文档管理、数据集构建、模型训练和版本管理
### 架构设计
采用 **Monorepo + 三包分离** 架构:
```
packages/
├── shared/ # 共享库 (PDF, OCR, 规范化, 匹配, 存储, 训练)
├── training/ # 训练服务 (GPU, 按需启动)
└── inference/ # 推理服务 (常驻运行)
frontend/ # React 前端 (Vite + TypeScript + TailwindCSS)
```
### 性能指标
| 指标 | 数值 |
|------|------|
| **已标注文档** | 9,738 (9,709 成功) |
| **总体字段匹配率** | 94.8% (82,604/87,121) |
| **测试** | 1,601 passed |
| **测试覆盖率** | 28% |
| **模型 mAP@0.5** | 93.5% |
---
## 安全性审查
### 检查清单
| 检查项 | 状态 | 说明 | 文件位置 |
|--------|------|------|----------|
| **Secrets 管理** | ✅ 良好 | 使用 `.env` 文件,`DB_PASSWORD` 无默认值 | `packages/shared/shared/config.py:46` |
| **SQL 注入防护** | ✅ 良好 | 使用参数化查询 | 全项目 |
| **认证机制** | ✅ 良好 | Admin token 验证 + 数据库持久化 | `packages/inference/inference/web/core/auth.py` |
| **输入验证** | ⚠️ 需改进 | 部分端点缺少文件类型/大小验证 | Web API 端点 |
| **路径遍历防护** | ⚠️ 需检查 | 需确认文件上传路径验证 | 文件上传处理 |
| **CORS 配置** | ❓ 待查 | 需确认生产环境配置 | FastAPI 中间件 |
| **Rate Limiting** | ✅ 良好 | 已实现核心限流器 | `packages/inference/inference/web/core/rate_limiter.py` |
| **错误处理** | ✅ 良好 | Web 层 356 处异常处理 | 全项目 |
### 详细发现
#### ✅ 安全实践良好的方面
1. **环境变量管理**
- 使用 `python-dotenv` 加载 `.env` 文件
- 数据库密码没有默认值,强制要求设置
- 验证逻辑在配置加载时执行
2. **认证实现**
- Token 存储在 PostgreSQL 数据库
- 支持 Token 过期检查
- 记录最后使用时间
3. **存储抽象层**
- 支持 Local/Azure/S3 多后端
- 通过环境变量配置,无硬编码凭证
#### ⚠️ 需要改进的安全问题
1. **时序攻击防护**
- **位置**: `packages/inference/inference/web/core/auth.py:46`
- **问题**: Token 验证使用普通字符串比较
- **建议**: 使用 `hmac.compare_digest()` 进行 constant-time 比较
- **风险等级**: 中
2. **文件上传验证**
- **位置**: Web API 文件上传端点
- **问题**: 需确认是否验证文件魔数 (magic bytes)
- **建议**: 添加 PDF 文件签名验证 (`%PDF`)
- **风险等级**: 中
3. **路径遍历风险**
- **位置**: 文件下载/访问端点
- **问题**: 需确认文件名是否经过净化处理
- **建议**: 使用 `pathlib.Path.name` 提取文件名,验证路径范围
- **风险等级**: 中
4. **CORS 配置**
- **位置**: FastAPI 中间件配置
- **问题**: 需确认生产环境是否允许所有来源
- **建议**: 生产环境明确指定允许的 origins
- **风险等级**: 低
---
## 代码质量审查
### 代码风格与规范
| 检查项 | 状态 | 说明 |
|--------|------|------|
| **类型注解** | ✅ 优秀 | 广泛使用 Type hints覆盖率 > 90% |
| **命名规范** | ✅ 良好 | 遵循 PEP 8snake_case 命名 |
| **文档字符串** | ✅ 良好 | 主要模块和函数都有文档 |
| **异常处理** | ✅ 良好 | Web 层 356 处异常处理 |
| **代码组织** | ✅ 优秀 | 模块化结构清晰,职责分离明确 |
| **文件大小** | ⚠️ 需关注 | 部分文件超过 800 行 |
### 架构设计评估
#### 优秀的设计决策
1. **Monorepo 结构**
- 清晰的包边界 (shared/training/inference)
- 避免循环依赖
- 便于独立部署
2. **存储抽象层**
- 统一的 `StorageBackend` 接口
- 支持本地/Azure/S3 无缝切换
- 预签名 URL 支持
3. **配置管理**
- 使用 dataclass 定义配置
- 环境变量 + 配置文件混合
- 类型安全
4. **数据库设计**
- 合理的表结构
- 状态机设计 (pending → running → completed)
- 外键约束完整
#### 需要改进的方面
1. **测试覆盖率偏低**
- 当前: 28%
- 目标: 60%+
- 优先测试核心业务逻辑
2. **部分文件过大**
- 建议拆分为多个小文件
- 单一职责原则
3. **缺少集成测试**
- 建议添加端到端测试
- API 契约测试
---
## 最佳实践遵循情况
### 已遵循的最佳实践
| 实践 | 实现状态 | 说明 |
|------|----------|------|
| **环境变量配置** | ✅ | 所有配置通过环境变量 |
| **数据库连接池** | ✅ | 使用 SQLModel + psycopg2 |
| **异步处理** | ✅ | FastAPI + async/await |
| **存储抽象层** | ✅ | 支持 Local/Azure/S3 |
| **Docker 容器化** | ✅ | 每个服务独立 Dockerfile |
| **数据增强** | ✅ | 12 种增强策略 |
| **模型版本管理** | ✅ | model_versions 表 |
| **限流保护** | ✅ | Rate limiter 实现 |
| **日志记录** | ✅ | 结构化日志 |
| **类型安全** | ✅ | 全面 Type hints |
### 技术栈评估
| 组件 | 技术选择 | 评估 |
|------|----------|------|
| **目标检测** | YOLOv11 (Ultralytics) | ✅ 业界标准 |
| **OCR 引擎** | PaddleOCR v5 | ✅ 支持瑞典语 |
| **PDF 处理** | PyMuPDF (fitz) | ✅ 功能强大 |
| **数据库** | PostgreSQL + SQLModel | ✅ 类型安全 |
| **Web 框架** | FastAPI + Uvicorn | ✅ 高性能 |
| **前端** | React + TypeScript + Vite | ✅ 现代栈 |
| **部署** | Docker + Azure/AWS | ✅ 云原生 |
---
## 关键文件详细分析
### 1. 配置文件
#### `packages/shared/shared/config.py`
- **安全性**: ✅ 密码从环境变量读取,无默认值
- **代码质量**: ✅ 清晰的配置结构
- **建议**: 考虑使用 Pydantic Settings 进行验证
#### `packages/inference/inference/web/config.py`
- **安全性**: ✅ 无敏感信息硬编码
- **代码质量**: ✅ 使用 frozen dataclass
- **建议**: 添加配置验证逻辑
### 2. 认证模块
#### `packages/inference/inference/web/core/auth.py`
- **安全性**: ⚠️ 需添加 constant-time 比较
- **代码质量**: ✅ 依赖注入模式
- **建议**:
```python
import hmac
if not hmac.compare_digest(api_key, settings.api_key):
raise HTTPException(403, "Invalid API key")
```
### 3. 限流器
#### `packages/inference/inference/web/core/rate_limiter.py`
- **安全性**: ✅ 内存限流实现
- **代码质量**: ✅ 清晰的接口设计
- **建议**: 生产环境考虑 Redis 分布式限流
### 4. 存储层
#### `packages/shared/shared/storage/`
- **安全性**: ✅ 无凭证硬编码
- **代码质量**: ✅ 抽象接口设计
- **建议**: 添加文件类型验证
---
## 性能与可扩展性
### 当前性能
| 指标 | 数值 | 评估 |
|------|------|------|
| **字段匹配率** | 94.8% | ✅ 优秀 |
| **模型 mAP@0.5** | 93.5% | ✅ 优秀 |
| **测试执行时间** | - | 待测量 |
| **API 响应时间** | - | 待测量 |
### 可扩展性评估
| 方面 | 评估 | 说明 |
|------|------|------|
| **水平扩展** | ✅ 良好 | 无状态服务设计 |
| **垂直扩展** | ✅ 良好 | 支持 GPU 加速 |
| **数据库扩展** | ⚠️ 需关注 | 单 PostgreSQL 实例 |
| **存储扩展** | ✅ 良好 | 云存储抽象层 |
---
## 风险评估
### 高风险项
1. **测试覆盖率低 (28%)**
- **影响**: 代码变更风险高
- **缓解**: 制定测试计划,优先覆盖核心逻辑
2. **文件上传安全**
- **影响**: 潜在的路径遍历和恶意文件上传
- **缓解**: 添加文件类型验证和路径净化
### 中风险项
1. **认证时序攻击**
- **影响**: Token 可能被暴力破解
- **缓解**: 使用 constant-time 比较
2. **CORS 配置**
- **影响**: CSRF 攻击风险
- **缓解**: 生产环境限制 origins
### 低风险项
1. **依赖更新**
- **影响**: 潜在的安全漏洞
- **缓解**: 定期运行 `pip-audit`
---
## 改进建议
### 立即执行 (高优先级)
1. **提升测试覆盖率**
```bash
# 目标: 60%+
pytest tests/ --cov=packages --cov-report=html
```
- 优先测试 `inference/pipeline/`
- 添加 API 集成测试
- 添加存储层测试
2. **加强文件上传安全**
```python
# 添加文件类型验证
ALLOWED_EXTENSIONS = {".pdf"}
MAX_FILE_SIZE = 10 * 1024 * 1024
# 验证 PDF 魔数
if not content.startswith(b"%PDF"):
raise HTTPException(400, "Invalid PDF file format")
```
3. **修复时序攻击漏洞**
```python
import hmac
def verify_token(token: str, expected: str) -> bool:
return hmac.compare_digest(token, expected)
```
### 短期执行 (中优先级)
4. **添加路径遍历防护**
```python
from pathlib import Path
def get_safe_path(filename: str, base_dir: Path) -> Path:
safe_name = Path(filename).name
full_path = (base_dir / safe_name).resolve()
if not full_path.is_relative_to(base_dir):
raise HTTPException(400, "Invalid file path")
return full_path
```
5. **配置 CORS 白名单**
```python
ALLOWED_ORIGINS = [
"http://localhost:5173",
"https://your-domain.com",
]
```
6. **添加安全测试**
```python
def test_sql_injection_prevented(client):
response = client.get("/api/v1/documents?id='; DROP TABLE;")
assert response.status_code in (400, 422)
def test_path_traversal_prevented(client):
response = client.get("/api/v1/results/../../etc/passwd")
assert response.status_code == 400
```
### 长期执行 (低优先级)
7. **依赖安全审计**
```bash
pip install pip-audit
pip-audit --desc --format=json > security-audit.json
```
8. **代码质量工具**
```bash
# 添加 pre-commit hooks
pip install pre-commit
pre-commit install
```
9. **性能监控**
- 添加 APM 工具 (如 Datadog, New Relic)
- 设置性能基准测试
---
## 总结
### 总体评分
| 维度 | 评分 | 说明 |
|------|------|------|
| **安全性** | 8/10 | 基础安全良好,需加强输入验证和认证 |
| **代码质量** | 8/10 | 结构清晰,类型注解完善,部分文件过大 |
| **可维护性** | 9/10 | 模块化设计,文档详尽,架构合理 |
| **测试覆盖** | 5/10 | 需大幅提升至 60%+ |
| **性能** | 9/10 | 94.8% 匹配率93.5% mAP |
| **总体** | **8.2/10** | 优秀的项目,需关注测试和安全细节 |
### 关键结论
1. **架构设计优秀**: Monorepo + 三包分离架构清晰,便于维护和扩展
2. **安全基础良好**: 没有严重的安全漏洞,基础防护到位
3. **代码质量高**: 类型注解完善,文档详尽,结构清晰
4. **测试是短板**: 28% 覆盖率是最大风险点
5. **生产就绪**: 经过小幅改进后可以投入生产使用
### 下一步行动
1. 🔴 **立即**: 提升测试覆盖率至 60%+
2. 🟡 **本周**: 修复时序攻击漏洞,加强文件上传验证
3. 🟡 **本月**: 添加路径遍历防护,配置 CORS 白名单
4. 🟢 **季度**: 建立安全审计流程,添加性能监控
---
## 附录
### 审查工具
- Claude Code Security Review Skill
- Claude Code Coding Standards Skill
- grep / find / wc
### 相关文件
- `packages/shared/shared/config.py`
- `packages/inference/inference/web/config.py`
- `packages/inference/inference/web/core/auth.py`
- `packages/inference/inference/web/core/rate_limiter.py`
- `packages/shared/shared/storage/`
### 参考资源
- [OWASP Top 10](https://owasp.org/www-project-top-ten/)
- [FastAPI Security](https://fastapi.tiangolo.com/tutorial/security/)
- [Bandit (Python Security Linter)](https://bandit.readthedocs.io/)
- [pip-audit](https://pypi.org/project/pip-audit/)

800
README.md
View File

@@ -7,8 +7,29 @@
本项目实现了一个完整的发票字段自动提取流程:
1. **自动标注**: 利用已有 CSV 结构化数据 + OCR 自动生成 YOLO 训练标注
2. **模型训练**: 使用 YOLOv11 训练字段检测模型
3. **推理提取**: 检测字段区域 OCR 提取文本 字段规范化
2. **模型训练**: 使用 YOLOv11 训练字段检测模型,支持数据增强
3. **推理提取**: 检测字段区域 -> OCR 提取文本 -> 字段规范化
4. **Web 管理**: React 前端 + FastAPI 后端,支持文档管理、数据集构建、模型训练和版本管理
### 架构
项目采用 **monorepo + 三包分离** 架构,训练和推理可独立部署:
```
packages/
├── shared/ # 共享库 (PDF, OCR, 规范化, 匹配, 存储, 训练)
├── training/ # 训练服务 (GPU, 按需启动)
└── inference/ # 推理服务 (常驻运行)
frontend/ # React 前端 (Vite + TypeScript + TailwindCSS)
```
| 服务 | 部署目标 | GPU | 生命周期 |
|------|---------|-----|---------|
| **Frontend** | Vercel / Nginx | 否 | 常驻 |
| **Inference** | Azure App Service / AWS | 可选 | 常驻 7x24 |
| **Training** | Azure ACI / AWS ECS | 必需 | 按需启动/销毁 |
两个服务通过共享 PostgreSQL 数据库通信。推理服务通过 API 触发训练任务,训练服务从数据库拾取任务执行。
### 当前进度
@@ -16,6 +37,9 @@
|------|------|
| **已标注文档** | 9,738 (9,709 成功) |
| **总体字段匹配率** | 94.8% (82,604/87,121) |
| **测试** | 1,601 passed |
| **测试覆盖率** | 28% |
| **模型 mAP@0.5** | 93.5% |
**各字段匹配率:**
@@ -42,34 +66,10 @@
|------|------|
| **WSL** | WSL 2 + Ubuntu 22.04 |
| **Conda** | Miniconda 或 Anaconda |
| **Python** | 3.10+ (通过 Conda 管理) |
| **Python** | 3.11+ (通过 Conda 管理) |
| **GPU** | NVIDIA GPU + CUDA 12.x (强烈推荐) |
| **数据库** | PostgreSQL (存储标注结果) |
## 功能特点
- **双模式 PDF 处理**: 支持文本层 PDF 和扫描图 PDF
- **自动标注**: 利用已有 CSV 结构化数据自动生成 YOLO 训练数据
- **多策略字段匹配**: 精确匹配、子串匹配、规范化匹配
- **数据库存储**: 标注结果存储在 PostgreSQL支持增量处理和断点续传
- **YOLO 检测**: 使用 YOLOv11 检测发票字段区域
- **OCR 识别**: 使用 PaddleOCR v5 提取检测区域的文本
- **Web 应用**: 提供 REST API 和可视化界面
- **增量训练**: 支持在已训练模型基础上继续训练
## 支持的字段
| 类别 ID | 字段名 | 说明 |
|---------|--------|------|
| 0 | invoice_number | 发票号码 |
| 1 | invoice_date | 发票日期 |
| 2 | invoice_due_date | 到期日期 |
| 3 | ocr_number | OCR 参考号 (瑞典支付系统) |
| 4 | bankgiro | Bankgiro 号码 |
| 5 | plusgiro | Plusgiro 号码 |
| 6 | amount | 金额 |
| 7 | supplier_organisation_number | 供应商组织号 |
## 安装
```bash
@@ -83,370 +83,458 @@ conda activate invoice-py311
# 3. 进入项目目录
cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2
# 4. 安装依赖
pip install -r requirements.txt
# 5. 安装 Web 依赖
pip install uvicorn fastapi python-multipart pydantic
# 4. 安装三个包 (editable mode)
pip install -e packages/shared
pip install -e packages/training
pip install -e packages/inference
```
## 快速开始
### 1. 准备数据
```
~/invoice-data/
├── raw_pdfs/
│ ├── {DocumentId}.pdf
│ └── ...
├── structured_data/
│ └── document_export_YYYYMMDD.csv
└── dataset/
└── temp/ (渲染的图片)
```
CSV 格式:
```csv
DocumentId,InvoiceDate,InvoiceNumber,InvoiceDueDate,OCR,Bankgiro,Plusgiro,Amount
3be53fd7-...,2025-12-13,100017500321,2026-01-03,100017500321,53939484,,114
```
### 2. 自动标注
```bash
# 使用双池模式 (CPU + GPU)
python -m src.cli.autolabel \
--dual-pool \
--cpu-workers 3 \
--gpu-workers 1
# 单线程模式
python -m src.cli.autolabel --workers 4
```
### 3. 训练模型
```bash
# 从预训练模型开始训练
python -m src.cli.train \
--model yolo11n.pt \
--epochs 100 \
--batch 16 \
--name invoice_yolo11n_full \
--dpi 150
```
### 4. 增量训练
当添加新数据后,可以在已训练模型基础上继续训练:
```bash
# 从已训练的 best.pt 继续训练
python -m src.cli.train \
--model runs/train/invoice_yolo11n_full/weights/best.pt \
--epochs 30 \
--batch 16 \
--name invoice_yolo11n_v2 \
--dpi 150
```
**增量训练建议**:
| 场景 | 建议 |
|------|------|
| 添加少量新数据 (<20%) | 继续训练 10-30 epochs |
| 添加大量新数据 (>50%) | 继续训练 50-100 epochs |
| 修正大量标注错误 | 从头训练 |
| 添加新的字段类型 | 从头训练 |
### 5. 推理
```bash
# 命令行推理
python -m src.cli.infer \
--model runs/train/invoice_yolo11n_full/weights/best.pt \
--input path/to/invoice.pdf \
--output result.json \
--gpu
```
### 6. Web 应用
```bash
# 启动 Web 服务器
python run_server.py --port 8000
# 开发模式 (自动重载)
python run_server.py --debug --reload
# 禁用 GPU
python run_server.py --no-gpu
```
访问 **http://localhost:8000** 使用 Web 界面。
#### Web API 端点
| 方法 | 端点 | 描述 |
|------|------|------|
| GET | `/` | Web UI 界面 |
| GET | `/api/v1/health` | 健康检查 |
| POST | `/api/v1/infer` | 上传文件并推理 |
| GET | `/api/v1/results/{filename}` | 获取可视化图片 |
## 训练配置
### YOLO 训练参数
```bash
python -m src.cli.train [OPTIONS]
Options:
--model, -m 基础模型 (默认: yolo11n.pt)
--epochs, -e 训练轮数 (默认: 100)
--batch, -b 批大小 (默认: 16)
--imgsz 图像尺寸 (默认: 1280)
--dpi PDF 渲染 DPI (默认: 150)
--name 训练名称
--limit 限制文档数 (用于测试)
--device 设备 (0=GPU, cpu)
```
### 训练最佳实践
1. **禁用翻转增强** (文本检测):
```python
fliplr=0.0, flipud=0.0
```
2. **使用 Early Stopping**:
```python
patience=20
```
3. **启用 AMP** (混合精度训练):
```python
amp=True
```
4. **保存检查点**:
```python
save_period=10
```
### 训练结果示例
使用约 10,000 张训练图片100 epochs 后的结果:
| 指标 | 值 |
|------|-----|
| **mAP@0.5** | 98.7% |
| **mAP@0.5-0.95** | 87.4% |
| **Precision** | 97.5% |
| **Recall** | 95.5% |
> 注:目前仍在持续标注更多数据,预计最终将有 25,000+ 张标注图片用于训练。
## 项目结构
```
invoice-master-poc-v2/
├── src/
│ ├── cli/ # 命令行工具
│ │ ├── autolabel.py # 自动标注
│ │ ── train.py # 模型训练
│ │ ├── infer.py # 推理
│ │ └── serve.py # Web 服务器
│ ├── pdf/ # PDF 处理
│ │ ├── extractor.py # 文本提取
│ │ ├── renderer.py # 图像渲染
│ │ └── detector.py # 类型检测
├── ocr/ # PaddleOCR 封装
│ ├── normalize/ # 字段规范化
│ ├── matcher/ # 字段匹配
│ ├── yolo/ # YOLO 相关
│ │ ├── annotation_generator.py
│ │ └── db_dataset.py
│ ├── inference/ # 推理管道
│ │ ├── pipeline.py
│ │ ├── yolo_detector.py
│ │ ── field_extractor.py
── processing/ # 多池处理架构
│ │ ├── worker_pool.py
│ │ ├── cpu_pool.py
│ │ ├── gpu_pool.py
│ │ ├── task_dispatcher.py
│ │ └── dual_pool_coordinator.py
── web/ # Web 应用
├── app.py # FastAPI 应用
├── routes.py # API 路由
├── services.py # 业务逻辑
── schemas.py # 数据模型
── config.py # 配置
└── data/ # 数据处理
├── config.py # 配置文件
├── run_server.py # Web 服务器启动脚本
├── runs/ # 训练输出
── train/
└── invoice_yolo11n_full/
│ └── weights/
├── best.pt
└── last.pt
└── requirements.txt
├── packages/
│ ├── shared/ # 共享库
│ │ ├── setup.py
│ │ ── shared/
│ │ ├── pdf/ # PDF 处理 (提取, 渲染, 检测)
│ │ ├── ocr/ # PaddleOCR 封装 + 机器码解析
│ │ ├── normalize/ # 字段规范化 (10 种 normalizer)
│ │ ├── matcher/ # 字段匹配 (精确/子串/模糊)
│ │ ├── storage/ # 存储抽象层 (Local/Azure/S3)
│ │ ├── training/ # 共享训练组件 (YOLOTrainer)
│ ├── augmentation/ # 数据增强 (DatasetAugmenter)
│ │ ├── utils/ # 工具 (验证, 清理, 模糊匹配)
├── data/ # DocumentDB, CSVLoader
│ │ ├── config.py # 全局配置 (数据库, 路径, DPI)
│ │ └── exceptions.py # 异常定义
│ │
│ ├── training/ # 训练服务 (GPU, 按需)
│ │ ├── setup.py
│ │ ├── Dockerfile
│ │ ── run_training.py # 入口 (--task-id 或 --poll)
── training/
│ │ ├── cli/ # train, autolabel, analyze_*, validate
│ │ ├── yolo/ # db_dataset, annotation_generator
│ │ ├── processing/ # CPU/GPU worker pool, task dispatcher
│ │ └── data/ # training_db, autolabel_report
│ │
── inference/ # 推理服务 (常驻)
├── setup.py
├── Dockerfile
├── run_server.py # Web 服务器入口
── inference/
── cli/ # infer, serve
├── pipeline/ # YOLO 检测, 字段提取, 解析器
│ ├── web/ # FastAPI 应用
│ │ ├── api/v1/ # REST API (admin, public, batch)
│ │ ├── schemas/ # Pydantic 数据模型
── services/ # 业务逻辑
│ ├── core/ # 认证, 调度器, 限流
└── workers/ # 后台任务队列
├── validation/ # LLM 验证器
├── data/ # AdminDB, AsyncRequestDB, Models
│ └── azure/ # ACI 训练触发器
├── frontend/ # React 前端 (Vite + TypeScript + TailwindCSS)
│ ├── src/
│ │ ├── api/ # API 客户端 (axios + react-query)
│ │ ├── components/ # UI 组件
│ │ │ ├── Dashboard.tsx # 文档管理面板
│ │ │ ├── Training.tsx # 训练管理 (数据集/任务)
│ │ │ ├── Models.tsx # 模型版本管理
│ │ │ ├── DatasetDetail.tsx # 数据集详情
│ │ │ └── InferenceDemo.tsx # 推理演示
│ │ └── hooks/ # React Query hooks
│ └── package.json
├── migrations/ # 数据库迁移 (SQL)
│ ├── 003_training_tasks.sql
│ ├── 004_training_datasets.sql
│ ├── 005_add_group_key.sql
│ ├── 006_model_versions.sql
│ ├── 007_training_tasks_extra_columns.sql
│ ├── 008_fix_model_versions_fk.sql
│ ├── 009_add_document_category.sql
│ └── 010_add_dataset_training_status.sql
├── tests/ # 测试 (1,601 tests)
├── docker-compose.yml # 本地开发 (postgres + inference + training)
├── run_server.py # 快捷启动脚本
└── runs/train/ # 训练输出 (weights, curves)
```
## 多池处理架构
## 支持的字段
项目使用 CPU + GPU 双池架构处理不同类型的 PDF
| 类别 ID | 字段名 | 说明 |
|---------|--------|------|
| 0 | invoice_number | 发票号码 |
| 1 | invoice_date | 发票日期 |
| 2 | invoice_due_date | 到期日期 |
| 3 | ocr_number | OCR 参考号 (瑞典支付系统) |
| 4 | bankgiro | Bankgiro 号码 |
| 5 | plusgiro | Plusgiro 号码 |
| 6 | amount | 金额 |
| 7 | supplier_organisation_number | 供应商组织号 |
| 8 | payment_line | 支付行 (机器可读格式) |
| 9 | customer_number | 客户编号 |
```
┌─────────────────────────────────────────────────────┐
│ DualPoolCoordinator │
│ ┌─────────────────┐ ┌─────────────────┐ │
│ │ CPU Pool │ │ GPU Pool │ │
│ │ (3 workers) │ │ (1 worker) │ │
│ │ │ │ │ │
│ │ Text PDFs │ │ Scanned PDFs │ │
│ │ ~50-87 it/s │ │ ~1-2 it/s │ │
│ └─────────────────┘ └─────────────────┘ │
│ │
│ TaskDispatcher: 根据 PDF 类型分配任务 │
└─────────────────────────────────────────────────────┘
```
## 快速开始
### 关键设计
- **spawn 启动方式**: 兼容 CUDA 多进程
- **as_completed()**: 无死锁结果收集
- **进程初始化器**: 每个 worker 加载一次模型
- **协调器持久化**: 跨 CSV 文件复用 worker 池
## 配置文件
### config.py
```python
# 数据库配置
DATABASE = {
'host': '192.168.68.31',
'port': 5432,
'database': 'docmaster',
'user': 'docmaster',
'password': '******',
}
# 路径配置
PATHS = {
'csv_dir': '~/invoice-data/structured_data',
'pdf_dir': '~/invoice-data/raw_pdfs',
'output_dir': '~/invoice-data/dataset',
}
```
## CLI 命令参考
### autolabel
### 1. 自动标注
```bash
python -m src.cli.autolabel [OPTIONS]
# 使用双池模式 (CPU + GPU)
python -m training.cli.autolabel \
--dual-pool \
--cpu-workers 3 \
--gpu-workers 1
Options:
--csv, -c CSV 文件路径 (支持 glob)
--pdf-dir, -p PDF 文件目录
--output, -o 输出目录
--workers, -w 单线程模式 worker 数 (默认: 4)
--dual-pool 启用双池模式
--cpu-workers CPU 池 worker 数 (默认: 3)
--gpu-workers GPU 池 worker 数 (默认: 1)
--dpi 渲染 DPI (默认: 150)
--limit, -l 限制处理文档数
# 单线程模式
python -m training.cli.autolabel --workers 4
```
### train
### 2. 训练模型
```bash
python -m src.cli.train [OPTIONS]
# 从预训练模型开始训练
python -m training.cli.train \
--model yolo11n.pt \
--epochs 100 \
--batch 16 \
--name invoice_fields \
--dpi 150
Options:
--model, -m 基础模型路径
--epochs, -e 训练轮数 (默认: 100)
--batch, -b 批大小 (默认: 16)
--imgsz 图像尺寸 (默认: 1280)
--dpi PDF 渲染 DPI (默认: 150)
--name 训练名称
--limit 限制文档数
# 低内存模式
python -m training.cli.train \
--model yolo11n.pt \
--epochs 100 \
--name invoice_fields \
--low-memory
# 从检查点恢复训练
python -m training.cli.train \
--model runs/train/invoice_fields/weights/last.pt \
--epochs 100 \
--name invoice_fields \
--resume
```
### infer
### 3. 推理
```bash
python -m src.cli.infer [OPTIONS]
Options:
--model, -m 模型路径
--input, -i 输入 PDF/图像
--output, -o 输出 JSON 路径
--confidence 置信度阈值 (默认: 0.5)
--dpi 渲染 DPI (默认: 300)
--gpu 使用 GPU
# 命令行推理
python -m inference.cli.infer \
--model runs/train/invoice_fields/weights/best.pt \
--input path/to/invoice.pdf \
--output result.json \
--gpu
```
### serve
### 4. Web 应用
```bash
python run_server.py [OPTIONS]
# 从 Windows PowerShell 启动
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && cd /mnt/c/Users/yaoji/git/ColaCoder/invoice-master-poc-v2 && python run_server.py --port 8000"
Options:
--host 绑定地址 (默认: 0.0.0.0)
--port 端口 (默认: 8000)
--model, -m 模型路径
--confidence 置信度阈值 (默认: 0.3)
--dpi 渲染 DPI (默认: 150)
--no-gpu 禁用 GPU
--reload 开发模式自动重载
--debug 调试模式
# 启动前端
cd frontend && npm install && npm run dev
# 访问 http://localhost:5173
```
### 5. Docker 本地开发
```bash
docker-compose up
# inference: http://localhost:8000
# training: 轮询模式自动拾取任务
```
## 训练触发流程
推理服务通过 API 触发训练,训练在独立的 GPU 实例上执行:
```
Inference API PostgreSQL Training (ACI)
| | |
POST /admin/training/trigger | |
|-> INSERT training_tasks ------>| status=pending |
|-> Azure SDK: create ACI --------------------------------> 启动
| | |
| |<-- SELECT pending -----+
| |--- UPDATE running -----+
| | 执行训练...
| |<-- UPDATE completed ---+
| | + model_path |
| | + metrics 自动关机
| | |
GET /admin/training/{id} | |
|-> SELECT training_tasks ------>| |
+-- return status + metrics | |
```
## Web API 端点
**Public API:**
| 方法 | 端点 | 描述 |
|------|------|------|
| GET | `/api/v1/health` | 健康检查 |
| POST | `/api/v1/infer` | 上传文件并推理 |
| GET | `/api/v1/results/{filename}` | 获取可视化图片 |
| POST | `/api/v1/async/infer` | 异步推理 |
| GET | `/api/v1/async/status/{task_id}` | 查询异步任务状态 |
**Admin API** (需要 `X-Admin-Token` header):
| 方法 | 端点 | 描述 |
|------|------|------|
| POST | `/api/v1/admin/auth/login` | 管理员登录 |
| GET | `/api/v1/admin/documents` | 文档列表 |
| POST | `/api/v1/admin/documents/upload` | 上传 PDF |
| GET | `/api/v1/admin/documents/{id}` | 文档详情 |
| PATCH | `/api/v1/admin/documents/{id}/status` | 更新文档状态 |
| PATCH | `/api/v1/admin/documents/{id}/category` | 更新文档分类 |
| GET | `/api/v1/admin/documents/categories` | 获取分类列表 |
| POST | `/api/v1/admin/documents/{id}/annotations` | 创建标注 |
**Training API:**
| 方法 | 端点 | 描述 |
|------|------|------|
| POST | `/api/v1/admin/training/datasets` | 创建数据集 |
| GET | `/api/v1/admin/training/datasets` | 数据集列表 |
| GET | `/api/v1/admin/training/datasets/{id}` | 数据集详情 |
| DELETE | `/api/v1/admin/training/datasets/{id}` | 删除数据集 |
| POST | `/api/v1/admin/training/tasks` | 创建训练任务 |
| GET | `/api/v1/admin/training/tasks` | 任务列表 |
| GET | `/api/v1/admin/training/tasks/{id}` | 任务详情 |
| GET | `/api/v1/admin/training/tasks/{id}/logs` | 训练日志 |
**Model Versions API:**
| 方法 | 端点 | 描述 |
|------|------|------|
| GET | `/api/v1/admin/models` | 模型版本列表 |
| GET | `/api/v1/admin/models/{id}` | 模型详情 |
| POST | `/api/v1/admin/models/{id}/activate` | 激活模型 |
| POST | `/api/v1/admin/models/{id}/archive` | 归档模型 |
| DELETE | `/api/v1/admin/models/{id}` | 删除模型 |
## Python API
```python
from src.inference import InferencePipeline
from inference.pipeline import InferencePipeline
# 初始化
pipeline = InferencePipeline(
model_path='runs/train/invoice_yolo11n_full/weights/best.pt',
confidence_threshold=0.3,
model_path='runs/train/invoice_fields/weights/best.pt',
confidence_threshold=0.25,
use_gpu=True,
dpi=150
dpi=150,
enable_fallback=True
)
# 处理 PDF
result = pipeline.process_pdf('invoice.pdf')
# 处理图片
result = pipeline.process_image('invoice.png')
print(result.fields)
# {'InvoiceNumber': '12345', 'Amount': '1234.56', ...}
# 获取结果
print(result.fields) # {'InvoiceNumber': '12345', 'Amount': '1234.56', ...}
print(result.confidence) # {'InvoiceNumber': 0.95, 'Amount': 0.92, ...}
print(result.to_json()) # JSON 格式输出
print(result.confidence)
# {'InvoiceNumber': 0.95, 'Amount': 0.92, ...}
# 交叉验证
if result.cross_validation:
print(f"OCR match: {result.cross_validation.ocr_match}")
```
## 开发状态
```python
from inference.pipeline.payment_line_parser import PaymentLineParser
from inference.pipeline.customer_number_parser import CustomerNumberParser
- [x] 文本层 PDF 自动标注
- [x] 扫描图 OCR 自动标注
- [x] 多策略字段匹配 (精确/子串/规范化)
- [x] PostgreSQL 数据库存储 (断点续传)
- [x] 信号处理和超时保护
- [x] YOLO 训练 (98.7% mAP@0.5)
- [x] 推理管道
- [x] 字段规范化和验证
- [x] Web 应用 (FastAPI + 前端 UI)
- [x] 增量训练支持
- [ ] 完成全部 25,000+ 文档标注
- [ ] 表格 items 处理
- [ ] 模型量化部署
# Payment Line 解析
parser = PaymentLineParser()
result = parser.parse("# 94228110015950070 # 15658 00 8 > 48666036#14#")
print(f"OCR: {result.ocr_number}, Amount: {result.amount}")
# Customer Number 解析
parser = CustomerNumberParser()
result = parser.parse("Said, Shakar Umj 436-R Billo")
print(f"Customer Number: {result}") # "UMJ 436-R"
```
## DPI 配置
系统所有组件统一使用 **150 DPI**。DPI 必须在训练和推理时保持一致。
| 组件 | 配置位置 |
|------|---------|
| 全局常量 | `packages/shared/shared/config.py` -> `DEFAULT_DPI = 150` |
| Web 推理 | `packages/inference/inference/web/config.py` -> `ModelConfig.dpi` |
| CLI 推理 | `python -m inference.cli.infer --dpi 150` |
| 自动标注 | `packages/shared/shared/config.py` -> `AUTOLABEL['dpi']` |
## 数据库架构
| 数据库 | 用途 | 存储内容 |
|--------|------|----------|
| **PostgreSQL** | 主数据库 | 文档、标注、训练任务、数据集、模型版本 |
### 主要表
| 表名 | 说明 |
|------|------|
| `admin_documents` | 文档管理 (PDF 元数据, 状态, 分类) |
| `admin_annotations` | 标注数据 (YOLO 格式边界框) |
| `training_tasks` | 训练任务 (状态, 配置, 指标) |
| `training_datasets` | 数据集 (train/val/test 分割) |
| `dataset_documents` | 数据集-文档关联 |
| `model_versions` | 模型版本管理 (激活/归档) |
| `admin_tokens` | 管理员认证令牌 |
| `async_requests` | 异步推理请求 |
### 数据集状态
| 状态 | 说明 |
|------|------|
| `building` | 正在构建数据集 |
| `ready` | 数据集就绪,可开始训练 |
| `trained` | 已完成训练 |
| `failed` | 构建失败 |
| `archived` | 已归档 |
### 训练状态
| 状态 | 说明 |
|------|------|
| `pending` | 等待执行 |
| `scheduled` | 已计划 |
| `running` | 正在训练 |
| `completed` | 训练完成 |
| `failed` | 训练失败 |
| `cancelled` | 已取消 |
## 测试
```bash
# 运行所有测试
DB_PASSWORD=xxx pytest tests/ -q
# 运行并查看覆盖率
DB_PASSWORD=xxx pytest tests/ --cov=packages --cov-report=term-missing
```
| 指标 | 数值 |
|------|------|
| **测试总数** | 1,601 |
| **通过率** | 100% |
| **覆盖率** | 28% |
## 存储抽象层
统一的文件存储接口,支持多后端切换:
| 后端 | 用途 | 安装 |
|------|------|------|
| **Local** | 本地开发/测试 | 默认 |
| **Azure Blob** | Azure 云部署 | `pip install -e "packages/shared[azure]"` |
| **AWS S3** | AWS 云部署 | `pip install -e "packages/shared[s3]"` |
### 配置文件 (storage.yaml)
```yaml
backend: ${STORAGE_BACKEND:-local}
presigned_url_expiry: 3600
local:
base_path: ${STORAGE_BASE_PATH:-./data/storage}
azure:
connection_string: ${AZURE_STORAGE_CONNECTION_STRING}
container_name: ${AZURE_STORAGE_CONTAINER:-documents}
s3:
bucket_name: ${AWS_S3_BUCKET}
region_name: ${AWS_REGION:-us-east-1}
```
### 使用示例
```python
from shared.storage import get_storage_backend
# 从配置文件加载
storage = get_storage_backend("storage.yaml")
# 上传文件
storage.upload(Path("local.pdf"), "documents/invoice.pdf")
# 获取预签名 URL (前端访问)
url = storage.get_presigned_url("documents/invoice.pdf", expires_in_seconds=3600)
```
### 环境变量
| 变量 | 后端 | 说明 |
|------|------|------|
| `STORAGE_BACKEND` | 全部 | `local`, `azure_blob`, `s3` |
| `STORAGE_BASE_PATH` | Local | 本地存储路径 |
| `AZURE_STORAGE_CONNECTION_STRING` | Azure | 连接字符串 |
| `AZURE_STORAGE_CONTAINER` | Azure | 容器名称 |
| `AWS_S3_BUCKET` | S3 | 存储桶名称 |
| `AWS_REGION` | S3 | 区域 (默认: us-east-1) |
## 数据增强
训练时支持多种数据增强策略:
| 增强类型 | 说明 |
|----------|------|
| `perspective_warp` | 透视变换 (模拟扫描角度) |
| `wrinkle` | 皱纹效果 |
| `edge_damage` | 边缘损坏 |
| `stain` | 污渍效果 |
| `lighting_variation` | 光照变化 |
| `shadow` | 阴影效果 |
| `gaussian_blur` | 高斯模糊 |
| `motion_blur` | 运动模糊 |
| `gaussian_noise` | 高斯噪声 |
| `salt_pepper` | 椒盐噪声 |
| `paper_texture` | 纸张纹理 |
| `scanner_artifacts` | 扫描伪影 |
增强配置示例:
```json
{
"augmentation": {
"gaussian_blur": { "enabled": true, "kernel_size": 5 },
"perspective_warp": { "enabled": true, "intensity": 0.1 }
},
"augmentation_multiplier": 2
}
```
## 前端功能
React 前端提供以下功能模块:
| 模块 | 功能 |
|------|------|
| **Dashboard** | 文档列表、上传、标注状态管理、分类筛选 |
| **Training** | 数据集创建/管理、训练任务配置、增强设置 |
| **Models** | 模型版本管理、激活/归档、指标查看 |
| **Inference Demo** | 实时推理演示、结果可视化 |
### 启动前端
```bash
cd frontend
npm install
npm run dev
# 访问 http://localhost:5173
```
## 技术栈
@@ -455,9 +543,27 @@ print(result.to_json()) # JSON 格式输出
| **目标检测** | YOLOv11 (Ultralytics) |
| **OCR 引擎** | PaddleOCR v5 (PP-OCRv5) |
| **PDF 处理** | PyMuPDF (fitz) |
| **数据库** | PostgreSQL + psycopg2 |
| **数据库** | PostgreSQL + SQLModel |
| **Web 框架** | FastAPI + Uvicorn |
| **深度学习** | PyTorch + CUDA |
| **前端** | React + TypeScript + Vite + TailwindCSS |
| **状态管理** | React Query (TanStack Query) |
| **深度学习** | PyTorch + CUDA 12.x |
| **部署** | Docker + Azure/AWS (训练) / App Service (推理) |
## 环境变量
| 变量 | 必需 | 说明 |
|------|------|------|
| `DB_PASSWORD` | 是 | PostgreSQL 密码 |
| `DB_HOST` | 否 | 数据库主机 (默认: localhost) |
| `DB_PORT` | 否 | 数据库端口 (默认: 5432) |
| `DB_NAME` | 否 | 数据库名 (默认: docmaster) |
| `DB_USER` | 否 | 数据库用户 (默认: docmaster) |
| `STORAGE_BASE_PATH` | 否 | 存储路径 (默认: ~/invoice-data/data) |
| `MODEL_PATH` | 否 | 模型路径 |
| `CONFIDENCE_THRESHOLD` | 否 | 置信度阈值 (默认: 0.5) |
| `SERVER_HOST` | 否 | 服务器主机 (默认: 0.0.0.0) |
| `SERVER_PORT` | 否 | 服务器端口 (默认: 8000) |
## 许可证

View File

@@ -1,64 +0,0 @@
"""
Configuration settings for the invoice extraction system.
"""
import os
import platform
def _is_wsl() -> bool:
"""Check if running inside WSL (Windows Subsystem for Linux)."""
if platform.system() != 'Linux':
return False
# Check for WSL-specific indicators
if os.environ.get('WSL_DISTRO_NAME'):
return True
try:
with open('/proc/version', 'r') as f:
return 'microsoft' in f.read().lower()
except (FileNotFoundError, PermissionError):
return False
# PostgreSQL Database Configuration
DATABASE = {
'host': '192.168.68.31',
'port': 5432,
'database': 'docmaster',
'user': 'docmaster',
'password': '0412220',
}
# Connection string for psycopg2
def get_db_connection_string():
return f"postgresql://{DATABASE['user']}:{DATABASE['password']}@{DATABASE['host']}:{DATABASE['port']}/{DATABASE['database']}"
# Paths Configuration - auto-detect WSL vs Windows
if _is_wsl():
# WSL: use native Linux filesystem for better I/O performance
PATHS = {
'csv_dir': os.path.expanduser('~/invoice-data/structured_data'),
'pdf_dir': os.path.expanduser('~/invoice-data/raw_pdfs'),
'output_dir': os.path.expanduser('~/invoice-data/dataset'),
'reports_dir': 'reports', # Keep reports in project directory
}
else:
# Windows or native Linux: use relative paths
PATHS = {
'csv_dir': 'data/structured_data',
'pdf_dir': 'data/raw_pdfs',
'output_dir': 'data/dataset',
'reports_dir': 'reports',
}
# Auto-labeling Configuration
AUTOLABEL = {
'workers': 2,
'dpi': 150,
'min_confidence': 0.5,
'train_ratio': 0.8,
'val_ratio': 0.1,
'test_ratio': 0.1,
'max_records_per_report': 10000,
}

96
create_shims.sh Normal file
View File

@@ -0,0 +1,96 @@
#!/bin/bash
# Create backward compatibility shims for all migrated files
# admin_auth.py -> core/auth.py
cat > src/web/admin_auth.py << 'EOF'
"""DEPRECATED: Import from src.web.core.auth instead"""
from src.web.core.auth import * # noqa: F401, F403
EOF
# admin_autolabel.py -> services/autolabel.py
cat > src/web/admin_autolabel.py << 'EOF'
"""DEPRECATED: Import from src.web.services.autolabel instead"""
from src.web.services.autolabel import * # noqa: F401, F403
EOF
# admin_scheduler.py -> core/scheduler.py
cat > src/web/admin_scheduler.py << 'EOF'
"""DEPRECATED: Import from src.web.core.scheduler instead"""
from src.web.core.scheduler import * # noqa: F401, F403
EOF
# admin_schemas.py -> schemas/admin.py
cat > src/web/admin_schemas.py << 'EOF'
"""DEPRECATED: Import from src.web.schemas.admin instead"""
from src.web.schemas.admin import * # noqa: F401, F403
EOF
# schemas.py -> schemas/inference.py + schemas/common.py
cat > src/web/schemas.py << 'EOF'
"""DEPRECATED: Import from src.web.schemas.inference or src.web.schemas.common instead"""
from src.web.schemas.inference import * # noqa: F401, F403
from src.web.schemas.common import * # noqa: F401, F403
EOF
# services.py -> services/inference.py
cat > src/web/services.py << 'EOF'
"""DEPRECATED: Import from src.web.services.inference instead"""
from src.web.services.inference import * # noqa: F401, F403
EOF
# async_queue.py -> workers/async_queue.py
cat > src/web/async_queue.py << 'EOF'
"""DEPRECATED: Import from src.web.workers.async_queue instead"""
from src.web.workers.async_queue import * # noqa: F401, F403
EOF
# async_service.py -> services/async_processing.py
cat > src/web/async_service.py << 'EOF'
"""DEPRECATED: Import from src.web.services.async_processing instead"""
from src.web.services.async_processing import * # noqa: F401, F403
EOF
# batch_queue.py -> workers/batch_queue.py
cat > src/web/batch_queue.py << 'EOF'
"""DEPRECATED: Import from src.web.workers.batch_queue instead"""
from src.web.workers.batch_queue import * # noqa: F401, F403
EOF
# batch_upload_service.py -> services/batch_upload.py
cat > src/web/batch_upload_service.py << 'EOF'
"""DEPRECATED: Import from src.web.services.batch_upload instead"""
from src.web.services.batch_upload import * # noqa: F401, F403
EOF
# batch_upload_routes.py -> api/v1/batch/routes.py
cat > src/web/batch_upload_routes.py << 'EOF'
"""DEPRECATED: Import from src.web.api.v1.batch.routes instead"""
from src.web.api.v1.batch.routes import * # noqa: F401, F403
EOF
# admin_routes.py -> api/v1/admin/documents.py
cat > src/web/admin_routes.py << 'EOF'
"""DEPRECATED: Import from src.web.api.v1.admin.documents instead"""
from src.web.api.v1.admin.documents import * # noqa: F401, F403
EOF
# admin_annotation_routes.py -> api/v1/admin/annotations.py
cat > src/web/admin_annotation_routes.py << 'EOF'
"""DEPRECATED: Import from src.web.api.v1.admin.annotations instead"""
from src.web.api.v1.admin.annotations import * # noqa: F401, F403
EOF
# admin_training_routes.py -> api/v1/admin/training.py
cat > src/web/admin_training_routes.py << 'EOF'
"""DEPRECATED: Import from src.web.api.v1.admin.training instead"""
from src.web.api.v1.admin.training import * # noqa: F401, F403
EOF
# routes.py -> api/v1/routes.py
cat > src/web/routes.py << 'EOF'
"""DEPRECATED: Import from src.web.api.v1.routes instead"""
from src.web.api.v1.routes import * # noqa: F401, F403
EOF
echo "✓ Created backward compatibility shims for all migrated files"

60
docker-compose.yml Normal file
View File

@@ -0,0 +1,60 @@
version: "3.8"
services:
postgres:
image: postgres:15
environment:
POSTGRES_DB: docmaster
POSTGRES_USER: docmaster
POSTGRES_PASSWORD: ${DB_PASSWORD:-devpassword}
ports:
- "5432:5432"
volumes:
- pgdata:/var/lib/postgresql/data
- ./migrations:/docker-entrypoint-initdb.d
inference:
build:
context: .
dockerfile: packages/inference/Dockerfile
ports:
- "8000:8000"
environment:
- DB_HOST=postgres
- DB_PORT=5432
- DB_NAME=docmaster
- DB_USER=docmaster
- DB_PASSWORD=${DB_PASSWORD:-devpassword}
- MODEL_PATH=/app/models/best.pt
volumes:
- ./models:/app/models
depends_on:
- postgres
training:
build:
context: .
dockerfile: packages/training/Dockerfile
environment:
- DB_HOST=postgres
- DB_PORT=5432
- DB_NAME=docmaster
- DB_USER=docmaster
- DB_PASSWORD=${DB_PASSWORD:-devpassword}
volumes:
- ./models:/app/models
- ./temp:/app/temp
depends_on:
- postgres
# Override CMD for local dev polling mode
command: ["python", "run_training.py", "--poll", "--poll-interval", "30"]
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
volumes:
pgdata:

View File

@@ -0,0 +1,772 @@
# AWS 部署方案完整指南
## 目录
- [核心问题](#核心问题)
- [存储方案](#存储方案)
- [训练方案](#训练方案)
- [推理方案](#推理方案)
- [价格对比](#价格对比)
- [推荐架构](#推荐架构)
- [实施步骤](#实施步骤)
- [AWS vs Azure 对比](#aws-vs-azure-对比)
---
## 核心问题
| 问题 | 答案 |
|------|------|
| S3 能用于训练吗? | 可以,用 Mountpoint for S3 或 SageMaker 原生支持 |
| 能实时从 S3 读取训练吗? | 可以SageMaker 支持 Pipe Mode 流式读取 |
| 本地能挂载 S3 吗? | 可以,用 s3fs-fuse 或 Rclone |
| EC2 空闲时收费吗? | 收费,只要运行就按小时计费 |
| 如何按需付费? | 用 SageMaker Managed Spot 或 Lambda |
| 推理服务用什么? | Lambda (Serverless) 或 ECS/Fargate (容器) |
---
## 存储方案
### Amazon S3推荐
S3 是 AWS 的核心存储服务,与 SageMaker 深度集成。
```bash
# 创建 S3 桶
aws s3 mb s3://invoice-training-data --region us-east-1
# 上传训练数据
aws s3 sync ./data/dataset/temp s3://invoice-training-data/images/
# 创建目录结构
aws s3api put-object --bucket invoice-training-data --key datasets/
aws s3api put-object --bucket invoice-training-data --key models/
```
### Mountpoint for Amazon S3
AWS 官方的 S3 挂载客户端,性能优于 s3fs
```bash
# 安装 Mountpoint
wget https://s3.amazonaws.com/mountpoint-s3-release/latest/x86_64/mount-s3.deb
sudo dpkg -i mount-s3.deb
# 挂载 S3
mkdir -p /mnt/s3-data
mount-s3 invoice-training-data /mnt/s3-data --region us-east-1
# 配置缓存(推荐)
mount-s3 invoice-training-data /mnt/s3-data \
--region us-east-1 \
--cache /tmp/s3-cache \
--metadata-ttl 60
```
### 本地开发挂载
**Linux/Mac (s3fs-fuse):**
```bash
# 安装
sudo apt-get install s3fs
# 配置凭证
echo ACCESS_KEY_ID:SECRET_ACCESS_KEY > ~/.passwd-s3fs
chmod 600 ~/.passwd-s3fs
# 挂载
s3fs invoice-training-data /mnt/s3 -o passwd_file=~/.passwd-s3fs
```
**Windows (Rclone):**
```powershell
# 安装
winget install Rclone.Rclone
# 配置
rclone config # 选择 s3
# 挂载
rclone mount aws:invoice-training-data Z: --vfs-cache-mode full
```
### 存储费用
| 层级 | 价格 | 适用场景 |
|------|------|---------|
| S3 Standard | $0.023/GB/月 | 频繁访问 |
| S3 Intelligent-Tiering | $0.023/GB/月 | 自动分层 |
| S3 Infrequent Access | $0.0125/GB/月 | 偶尔访问 |
| S3 Glacier | $0.004/GB/月 | 长期存档 |
**本项目**: ~10,000 张图片 × 500KB = ~5GB → **~$0.12/月**
### SageMaker 数据输入模式
| 模式 | 说明 | 适用场景 |
|------|------|---------|
| File Mode | 下载到本地再训练 | 小数据集 |
| Pipe Mode | 流式读取,不占本地空间 | 大数据集 |
| FastFile Mode | 按需下载,最高 3x 加速 | 推荐 |
---
## 训练方案
### 方案总览
| 方案 | 适用场景 | 空闲费用 | 复杂度 | Spot 支持 |
|------|---------|---------|--------|----------|
| EC2 GPU | 简单直接 | 24/7 收费 | 低 | 是 |
| SageMaker Training | MLOps 集成 | 按任务计费 | 中 | 是 |
| EKS + GPU | Kubernetes | 复杂计费 | 高 | 是 |
### EC2 vs SageMaker
| 特性 | EC2 | SageMaker |
|------|-----|-----------|
| 本质 | 虚拟机 | 托管 ML 平台 |
| 计算费用 | $3.06/hr (p3.2xlarge) | $3.825/hr (+25%) |
| 管理开销 | 需自己配置 | 全托管 |
| Spot 折扣 | 最高 90% | 最高 90% |
| 实验跟踪 | 无 | 内置 |
| 自动关机 | 无 | 任务完成自动停止 |
### GPU 实例价格 (2025 年 6 月降价后)
| 实例 | GPU | 显存 | On-Demand | Spot 价格 |
|------|-----|------|-----------|----------|
| g4dn.xlarge | 1x T4 | 16GB | $0.526/hr | ~$0.16/hr |
| g4dn.2xlarge | 1x T4 | 16GB | $0.752/hr | ~$0.23/hr |
| p3.2xlarge | 1x V100 | 16GB | $3.06/hr | ~$0.92/hr |
| p3.8xlarge | 4x V100 | 64GB | $12.24/hr | ~$3.67/hr |
| p4d.24xlarge | 8x A100 | 320GB | $32.77/hr | ~$9.83/hr |
**注意**: 2025 年 6 月 AWS 宣布 P4/P5 系列最高降价 45%。
### Spot 实例
```bash
# EC2 Spot 请求
aws ec2 request-spot-instances \
--instance-count 1 \
--type "one-time" \
--launch-specification '{
"ImageId": "ami-0123456789abcdef0",
"InstanceType": "p3.2xlarge",
"KeyName": "my-key"
}'
```
### SageMaker Managed Spot Training
```python
from sagemaker.pytorch import PyTorch
estimator = PyTorch(
entry_point="train.py",
source_dir="./src",
role="arn:aws:iam::123456789012:role/SageMakerRole",
instance_count=1,
instance_type="ml.p3.2xlarge",
framework_version="2.0",
py_version="py310",
# 启用 Spot 实例
use_spot_instances=True,
max_run=3600, # 最长运行 1 小时
max_wait=7200, # 最长等待 2 小时
# 检查点配置Spot 中断恢复)
checkpoint_s3_uri="s3://invoice-training-data/checkpoints/",
checkpoint_local_path="/opt/ml/checkpoints",
hyperparameters={
"epochs": 100,
"batch-size": 16,
}
)
estimator.fit({
"training": "s3://invoice-training-data/datasets/train/",
"validation": "s3://invoice-training-data/datasets/val/"
})
```
---
## 推理方案
### 方案对比
| 方案 | GPU 支持 | 扩缩容 | 冷启动 | 价格 | 适用场景 |
|------|---------|--------|--------|------|---------|
| Lambda | 否 | 自动 0-N | 快 | 按调用 | 低流量、CPU 推理 |
| Lambda + Container | 否 | 自动 0-N | 较慢 | 按调用 | 复杂依赖 |
| ECS Fargate | 否 | 自动 | 中 | ~$30/月 | 容器化服务 |
| ECS + EC2 GPU | 是 | 手动/自动 | 慢 | ~$100+/月 | GPU 推理 |
| SageMaker Endpoint | 是 | 自动 | 慢 | ~$80+/月 | MLOps 集成 |
| SageMaker Serverless | 否 | 自动 0-N | 中 | 按调用 | 间歇性流量 |
### 推荐方案 1: AWS Lambda (低流量)
对于 YOLO CPU 推理Lambda 最经济:
```python
# lambda_function.py
import json
import boto3
from ultralytics import YOLO
# 模型在 Lambda Layer 或 /tmp 加载
model = None
def load_model():
global model
if model is None:
# 从 S3 下载模型到 /tmp
s3 = boto3.client('s3')
s3.download_file('invoice-models', 'best.pt', '/tmp/best.pt')
model = YOLO('/tmp/best.pt')
return model
def lambda_handler(event, context):
model = load_model()
# 从 S3 获取图片
s3 = boto3.client('s3')
bucket = event['bucket']
key = event['key']
local_path = f'/tmp/{key.split("/")[-1]}'
s3.download_file(bucket, key, local_path)
# 执行推理
results = model.predict(local_path, conf=0.5)
return {
'statusCode': 200,
'body': json.dumps({
'fields': extract_fields(results),
'confidence': get_confidence(results)
})
}
```
**Lambda 配置:**
```yaml
# serverless.yml
service: invoice-inference
provider:
name: aws
runtime: python3.11
timeout: 30
memorySize: 4096 # 4GB 内存
functions:
infer:
handler: lambda_function.lambda_handler
events:
- http:
path: /infer
method: post
layers:
- arn:aws:lambda:us-east-1:123456789012:layer:yolo-deps:1
```
### 推荐方案 2: ECS Fargate (中流量)
```yaml
# task-definition.json
{
"family": "invoice-inference",
"networkMode": "awsvpc",
"requiresCompatibilities": ["FARGATE"],
"cpu": "2048",
"memory": "4096",
"containerDefinitions": [
{
"name": "inference",
"image": "123456789012.dkr.ecr.us-east-1.amazonaws.com/invoice-inference:latest",
"portMappings": [
{
"containerPort": 8000,
"protocol": "tcp"
}
],
"environment": [
{"name": "MODEL_PATH", "value": "/app/models/best.pt"}
],
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/ecs/invoice-inference",
"awslogs-region": "us-east-1",
"awslogs-stream-prefix": "ecs"
}
}
}
]
}
```
**Auto Scaling 配置:**
```bash
# 创建 Auto Scaling Target
aws application-autoscaling register-scalable-target \
--service-namespace ecs \
--resource-id service/invoice-cluster/invoice-service \
--scalable-dimension ecs:service:DesiredCount \
--min-capacity 1 \
--max-capacity 10
# 基于 CPU 使用率扩缩容
aws application-autoscaling put-scaling-policy \
--service-namespace ecs \
--resource-id service/invoice-cluster/invoice-service \
--scalable-dimension ecs:service:DesiredCount \
--policy-name cpu-scaling \
--policy-type TargetTrackingScaling \
--target-tracking-scaling-policy-configuration '{
"TargetValue": 70,
"PredefinedMetricSpecification": {
"PredefinedMetricType": "ECSServiceAverageCPUUtilization"
},
"ScaleOutCooldown": 60,
"ScaleInCooldown": 120
}'
```
### 方案 3: SageMaker Serverless Inference
```python
from sagemaker.serverless import ServerlessInferenceConfig
from sagemaker.pytorch import PyTorchModel
model = PyTorchModel(
model_data="s3://invoice-models/model.tar.gz",
role="arn:aws:iam::123456789012:role/SageMakerRole",
entry_point="inference.py",
framework_version="2.0",
py_version="py310"
)
serverless_config = ServerlessInferenceConfig(
memory_size_in_mb=4096,
max_concurrency=10
)
predictor = model.deploy(
serverless_inference_config=serverless_config,
endpoint_name="invoice-inference-serverless"
)
```
### 推理性能对比
| 配置 | 单次推理时间 | 并发能力 | 月费估算 |
|------|------------|---------|---------|
| Lambda 4GB | ~500-800ms | 按需扩展 | ~$15 (10K 请求) |
| Fargate 2vCPU 4GB | ~300-500ms | ~50 QPS | ~$30 |
| Fargate 4vCPU 8GB | ~200-300ms | ~100 QPS | ~$60 |
| EC2 g4dn.xlarge (T4) | ~50-100ms | ~200 QPS | ~$380 |
---
## 价格对比
### 训练成本对比(假设每天训练 2 小时)
| 方案 | 计算方式 | 月费 |
|------|---------|------|
| EC2 24/7 运行 | 24h × 30天 × $3.06 | ~$2,200 |
| EC2 按需启停 | 2h × 30天 × $3.06 | ~$184 |
| EC2 Spot 按需 | 2h × 30天 × $0.92 | ~$55 |
| SageMaker On-Demand | 2h × 30天 × $3.825 | ~$230 |
| SageMaker Spot | 2h × 30天 × $1.15 | ~$69 |
### 本项目完整成本估算
| 组件 | 推荐方案 | 月费 |
|------|---------|------|
| 数据存储 | S3 Standard (5GB) | ~$0.12 |
| 数据库 | RDS PostgreSQL (db.t3.micro) | ~$15 |
| 推理服务 | Lambda (10K 请求/月) | ~$15 |
| 推理服务 (替代) | ECS Fargate | ~$30 |
| 训练服务 | SageMaker Spot (按需) | ~$2-5/次 |
| ECR (镜像存储) | 基本使用 | ~$1 |
| **总计 (Lambda)** | | **~$35/月** + 训练费 |
| **总计 (Fargate)** | | **~$50/月** + 训练费 |
---
## 推荐架构
### 整体架构图
```
┌─────────────────────────────────────┐
│ Amazon S3 │
│ ├── training-images/ │
│ ├── datasets/ │
│ ├── models/ │
│ └── checkpoints/ │
└─────────────────┬───────────────────┘
┌─────────────────────────────────┼─────────────────────────────────┐
│ │ │
▼ ▼ ▼
┌───────────────────────┐ ┌───────────────────────┐ ┌───────────────────────┐
│ 推理服务 │ │ 训练服务 │ │ API Gateway │
│ │ │ │ │ │
│ 方案 A: Lambda │ │ SageMaker │ │ REST API │
│ ~$15/月 (10K req) │ │ Managed Spot │ │ 触发 Lambda/ECS │
│ │ │ ~$2-5/次训练 │ │ │
│ 方案 B: ECS Fargate │ │ │ │ │
│ ~$30/月 │ │ - 自动启动 │ │ │
│ │ │ - 训练完成自动停止 │ │ │
│ ┌───────────────────┐ │ │ - 检查点自动保存 │ │ │
│ │ FastAPI + YOLO │ │ │ │ │ │
│ │ CPU 推理 │ │ │ │ │ │
│ └───────────────────┘ │ └───────────┬───────────┘ └───────────────────────┘
└───────────┬───────────┘ │
│ │
└───────────────────────────────┼───────────────────────────────────────────┘
┌───────────────────────┐
│ Amazon RDS │
│ PostgreSQL │
│ db.t3.micro │
│ ~$15/月 │
└───────────────────────┘
```
### Lambda 推理配置
```yaml
# SAM template
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
InferenceFunction:
Type: AWS::Serverless::Function
Properties:
Handler: app.lambda_handler
Runtime: python3.11
MemorySize: 4096
Timeout: 30
Environment:
Variables:
MODEL_BUCKET: invoice-models
MODEL_KEY: best.pt
Policies:
- S3ReadPolicy:
BucketName: invoice-models
- S3ReadPolicy:
BucketName: invoice-uploads
Events:
InferApi:
Type: Api
Properties:
Path: /infer
Method: post
```
### SageMaker 训练配置
```python
from sagemaker.pytorch import PyTorch
estimator = PyTorch(
entry_point="train.py",
source_dir="./src",
role="arn:aws:iam::123456789012:role/SageMakerRole",
instance_count=1,
instance_type="ml.g4dn.xlarge", # T4 GPU
framework_version="2.0",
py_version="py310",
# Spot 实例配置
use_spot_instances=True,
max_run=7200,
max_wait=14400,
# 检查点
checkpoint_s3_uri="s3://invoice-training-data/checkpoints/",
hyperparameters={
"epochs": 100,
"batch-size": 16,
"model": "yolo11n.pt"
}
)
```
---
## 实施步骤
### 阶段 1: 存储设置
```bash
# 创建 S3 桶
aws s3 mb s3://invoice-training-data --region us-east-1
aws s3 mb s3://invoice-models --region us-east-1
# 上传训练数据
aws s3 sync ./data/dataset/temp s3://invoice-training-data/images/
# 配置生命周期(可选,自动转冷存储)
aws s3api put-bucket-lifecycle-configuration \
--bucket invoice-training-data \
--lifecycle-configuration '{
"Rules": [{
"ID": "MoveToIA",
"Status": "Enabled",
"Transitions": [{
"Days": 30,
"StorageClass": "STANDARD_IA"
}]
}]
}'
```
### 阶段 2: 数据库设置
```bash
# 创建 RDS PostgreSQL
aws rds create-db-instance \
--db-instance-identifier invoice-db \
--db-instance-class db.t3.micro \
--engine postgres \
--engine-version 15 \
--master-username docmaster \
--master-user-password YOUR_PASSWORD \
--allocated-storage 20
# 配置安全组
aws ec2 authorize-security-group-ingress \
--group-id sg-xxx \
--protocol tcp \
--port 5432 \
--source-group sg-yyy
```
### 阶段 3: 推理服务部署
**方案 A: Lambda**
```bash
# 创建 Lambda Layer (依赖)
cd lambda-layer
pip install ultralytics opencv-python-headless -t python/
zip -r layer.zip python/
aws lambda publish-layer-version \
--layer-name yolo-deps \
--zip-file fileb://layer.zip \
--compatible-runtimes python3.11
# 部署 Lambda 函数
cd ../lambda
zip function.zip lambda_function.py
aws lambda create-function \
--function-name invoice-inference \
--runtime python3.11 \
--handler lambda_function.lambda_handler \
--role arn:aws:iam::123456789012:role/LambdaRole \
--zip-file fileb://function.zip \
--memory-size 4096 \
--timeout 30 \
--layers arn:aws:lambda:us-east-1:123456789012:layer:yolo-deps:1
# 创建 API Gateway
aws apigatewayv2 create-api \
--name invoice-api \
--protocol-type HTTP \
--target arn:aws:lambda:us-east-1:123456789012:function:invoice-inference
```
**方案 B: ECS Fargate**
```bash
# 创建 ECR 仓库
aws ecr create-repository --repository-name invoice-inference
# 构建并推送镜像
aws ecr get-login-password | docker login --username AWS --password-stdin 123456789012.dkr.ecr.us-east-1.amazonaws.com
docker build -t invoice-inference .
docker tag invoice-inference:latest 123456789012.dkr.ecr.us-east-1.amazonaws.com/invoice-inference:latest
docker push 123456789012.dkr.ecr.us-east-1.amazonaws.com/invoice-inference:latest
# 创建 ECS 集群
aws ecs create-cluster --cluster-name invoice-cluster
# 注册任务定义
aws ecs register-task-definition --cli-input-json file://task-definition.json
# 创建服务
aws ecs create-service \
--cluster invoice-cluster \
--service-name invoice-service \
--task-definition invoice-inference \
--desired-count 1 \
--launch-type FARGATE \
--network-configuration '{
"awsvpcConfiguration": {
"subnets": ["subnet-xxx"],
"securityGroups": ["sg-xxx"],
"assignPublicIp": "ENABLED"
}
}'
```
### 阶段 4: 训练服务设置
```python
# setup_sagemaker.py
import boto3
import sagemaker
from sagemaker.pytorch import PyTorch
# 创建 SageMaker 执行角色
iam = boto3.client('iam')
role_arn = "arn:aws:iam::123456789012:role/SageMakerExecutionRole"
# 配置训练任务
estimator = PyTorch(
entry_point="train.py",
source_dir="./src/training",
role=role_arn,
instance_count=1,
instance_type="ml.g4dn.xlarge",
framework_version="2.0",
py_version="py310",
use_spot_instances=True,
max_run=7200,
max_wait=14400,
checkpoint_s3_uri="s3://invoice-training-data/checkpoints/",
)
# 保存配置供后续使用
estimator.save("training_config.json")
```
### 阶段 5: 集成训练触发 API
```python
# lambda_trigger_training.py
import boto3
import sagemaker
from sagemaker.pytorch import PyTorch
def lambda_handler(event, context):
"""触发 SageMaker 训练任务"""
epochs = event.get('epochs', 100)
estimator = PyTorch(
entry_point="train.py",
source_dir="s3://invoice-training-data/code/",
role="arn:aws:iam::123456789012:role/SageMakerRole",
instance_count=1,
instance_type="ml.g4dn.xlarge",
framework_version="2.0",
py_version="py310",
use_spot_instances=True,
max_run=7200,
max_wait=14400,
hyperparameters={
"epochs": epochs,
"batch-size": 16,
}
)
estimator.fit(
inputs={
"training": "s3://invoice-training-data/datasets/train/",
"validation": "s3://invoice-training-data/datasets/val/"
},
wait=False # 异步执行
)
return {
'statusCode': 200,
'body': {
'training_job_name': estimator.latest_training_job.name,
'status': 'Started'
}
}
```
---
## AWS vs Azure 对比
### 服务对应关系
| 功能 | AWS | Azure |
|------|-----|-------|
| 对象存储 | S3 | Blob Storage |
| 挂载工具 | Mountpoint for S3 | BlobFuse2 |
| ML 平台 | SageMaker | Azure ML |
| 容器服务 | ECS/Fargate | Container Apps |
| Serverless | Lambda | Functions |
| GPU VM | EC2 P3/G4dn | NC/ND 系列 |
| 容器注册 | ECR | ACR |
| 数据库 | RDS PostgreSQL | PostgreSQL Flexible |
### 价格对比
| 组件 | AWS | Azure |
|------|-----|-------|
| 存储 (5GB) | ~$0.12/月 | ~$0.09/月 |
| 数据库 | ~$15/月 | ~$25/月 |
| 推理 (Serverless) | ~$15/月 | ~$30/月 |
| 推理 (容器) | ~$30/月 | ~$30/月 |
| 训练 (Spot GPU) | ~$2-5/次 | ~$1-5/次 |
| **总计** | **~$35-50/月** | **~$65/月** |
### 优劣对比
| 方面 | AWS 优势 | Azure 优势 |
|------|---------|-----------|
| 价格 | Lambda 更便宜 | GPU Spot 更便宜 |
| ML 平台 | SageMaker 更成熟 | Azure ML 更易用 |
| Serverless GPU | 无原生支持 | Container Apps GPU |
| 文档 | 更丰富 | 中文文档更好 |
| 生态 | 更大 | Office 365 集成 |
---
## 总结
### 推荐配置
| 组件 | 推荐方案 | 月费估算 |
|------|---------|---------|
| 数据存储 | S3 Standard | ~$0.12 |
| 数据库 | RDS db.t3.micro | ~$15 |
| 推理服务 | Lambda 4GB | ~$15 |
| 训练服务 | SageMaker Spot | 按需 ~$2-5/次 |
| ECR | 基本使用 | ~$1 |
| **总计** | | **~$35/月** + 训练费 |
### 关键决策
| 场景 | 选择 |
|------|------|
| 最低成本 | Lambda + SageMaker Spot |
| 稳定推理 | ECS Fargate |
| GPU 推理 | ECS + EC2 GPU |
| MLOps 集成 | SageMaker 全家桶 |
### 注意事项
1. **Lambda 冷启动**: 首次调用 ~3-5 秒,可用 Provisioned Concurrency 解决
2. **Spot 中断**: 配置检查点SageMaker 自动恢复
3. **S3 传输**: 同区域免费,跨区域收费
4. **Fargate 无 GPU**: 需要 GPU 必须用 ECS + EC2
5. **SageMaker 加价**: 比 EC2 贵 ~25%,但省管理成本

View File

@@ -0,0 +1,567 @@
# Azure 部署方案完整指南
## 目录
- [核心问题](#核心问题)
- [存储方案](#存储方案)
- [训练方案](#训练方案)
- [推理方案](#推理方案)
- [价格对比](#价格对比)
- [推荐架构](#推荐架构)
- [实施步骤](#实施步骤)
---
## 核心问题
| 问题 | 答案 |
|------|------|
| Azure Blob Storage 能用于训练吗? | 可以,用 BlobFuse2 挂载 |
| 能实时从 Blob 读取训练吗? | 可以,但建议配置本地缓存 |
| 本地能挂载 Azure Blob 吗? | 可以,用 Rclone (Windows) 或 BlobFuse2 (Linux) |
| VM 空闲时收费吗? | 收费,只要开机就按小时计费 |
| 如何按需付费? | 用 Serverless GPU 或 min=0 的 Compute Cluster |
| 推理服务用什么? | Container Apps (CPU) 或 Serverless GPU |
---
## 存储方案
### Azure Blob Storage + BlobFuse2推荐
```bash
# 安装 BlobFuse2
sudo apt-get install blobfuse2
# 配置文件
cat > ~/blobfuse-config.yaml << 'EOF'
logging:
type: syslog
level: log_warning
components:
- libfuse
- file_cache
- azstorage
file_cache:
path: /tmp/blobfuse2
timeout-sec: 120
max-size-mb: 4096
azstorage:
type: block
account-name: YOUR_ACCOUNT
account-key: YOUR_KEY
container: training-images
EOF
# 挂载
mkdir -p /mnt/azure-blob
blobfuse2 mount /mnt/azure-blob --config-file=~/blobfuse-config.yaml
```
### 本地开发Windows
```powershell
# 安装
winget install WinFsp.WinFsp
winget install Rclone.Rclone
# 配置
rclone config # 选择 azureblob
# 挂载为 Z: 盘
rclone mount azure:training-images Z: --vfs-cache-mode full
```
### 存储费用
| 层级 | 价格 | 适用场景 |
|------|------|---------|
| Hot | $0.018/GB/月 | 频繁访问 |
| Cool | $0.01/GB/月 | 偶尔访问 |
| Archive | $0.002/GB/月 | 长期存档 |
**本项目**: ~10,000 张图片 × 500KB = ~5GB → **~$0.09/月**
---
## 训练方案
### 方案总览
| 方案 | 适用场景 | 空闲费用 | 复杂度 |
|------|---------|---------|--------|
| Azure VM | 简单直接 | 24/7 收费 | 低 |
| Azure VM Spot | 省钱、可中断 | 24/7 收费 | 低 |
| Azure ML Compute | MLOps 集成 | 可缩到 0 | 中 |
| Container Apps GPU | Serverless | 自动缩到 0 | 中 |
### Azure VM vs Azure ML
| 特性 | Azure VM | Azure ML |
|------|----------|----------|
| 本质 | 虚拟机 | 托管 ML 平台 |
| 计算费用 | $3.06/hr (NC6s_v3) | $3.06/hr (相同) |
| 附加费用 | ~$5/月 | ~$20-30/月 |
| 实验跟踪 | 无 | 内置 |
| 自动扩缩 | 无 | 支持 min=0 |
| 适用人群 | DevOps | 数据科学家 |
### Azure ML 附加费用明细
| 服务 | 用途 | 费用 |
|------|------|------|
| Container Registry | Docker 镜像 | ~$5-20/月 |
| Blob Storage | 日志、模型 | ~$0.10/月 |
| Application Insights | 监控 | ~$0-10/月 |
| Key Vault | 密钥管理 | <$1/月 |
### Spot 实例
两种平台都支持 Spot/低优先级实例,最高节省 90%
| 类型 | 正常价格 | Spot 价格 | 节省 |
|------|---------|----------|------|
| NC6s_v3 (V100) | $3.06/hr | ~$0.92/hr | 70% |
| NC24ads_A100_v4 | $3.67/hr | ~$1.15/hr | 69% |
### GPU 实例价格
| 实例 | GPU | 显存 | 价格/小时 | Spot 价格 |
|------|-----|------|---------|----------|
| NC6s_v3 | 1x V100 | 16GB | $3.06 | $0.92 |
| NC24s_v3 | 4x V100 | 64GB | $12.24 | $3.67 |
| NC24ads_A100_v4 | 1x A100 | 80GB | $3.67 | $1.15 |
| NC48ads_A100_v4 | 2x A100 | 160GB | $7.35 | $2.30 |
---
## 推理方案
### 方案对比
| 方案 | GPU 支持 | 扩缩容 | 价格 | 适用场景 |
|------|---------|--------|------|---------|
| Container Apps (CPU) | 否 | 自动 0-N | ~$30/月 | YOLO 推理 (够用) |
| Container Apps (GPU) | 是 | Serverless | 按秒计费 | 高吞吐推理 |
| Azure App Service | 否 | 手动/自动 | ~$50/月 | 简单部署 |
| Azure ML Endpoint | 是 | 自动 | ~$100+/月 | MLOps 集成 |
| AKS (Kubernetes) | 是 | 自动 | 复杂计费 | 大规模生产 |
### 推荐: Container Apps (CPU)
对于 YOLO 推理,**CPU 足够**,不需要 GPU
- YOLOv11n 在 CPU 上推理时间 ~200-500ms
- 比 GPU 便宜很多,适合中低流量
```yaml
# Container Apps 配置
name: invoice-inference
image: myacr.azurecr.io/invoice-inference:v1
resources:
cpu: 2.0
memory: 4Gi
scale:
minReplicas: 1 # 最少 1 个实例保持响应
maxReplicas: 10 # 最多扩展到 10 个
rules:
- name: http-scaling
http:
metadata:
concurrentRequests: "50" # 每实例 50 并发时扩容
```
### 推理服务代码示例
```python
# Dockerfile
FROM python:3.11-slim
WORKDIR /app
# 安装依赖
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# 复制代码和模型
COPY src/ ./src/
COPY models/best.pt ./models/
# 启动服务
CMD ["uvicorn", "src.web.app:app", "--host", "0.0.0.0", "--port", "8000"]
```
```python
# src/web/app.py
from fastapi import FastAPI, UploadFile, File
from ultralytics import YOLO
import tempfile
app = FastAPI()
model = YOLO("models/best.pt")
@app.post("/api/v1/infer")
async def infer(file: UploadFile = File(...)):
# 保存上传文件
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp:
content = await file.read()
tmp.write(content)
tmp_path = tmp.name
# 执行推理
results = model.predict(tmp_path, conf=0.5)
# 返回结果
return {
"fields": extract_fields(results),
"confidence": get_confidence(results)
}
@app.get("/health")
async def health():
return {"status": "healthy"}
```
### 部署命令
```bash
# 1. 创建 Container Registry
az acr create --name invoiceacr --resource-group myRG --sku Basic
# 2. 构建并推送镜像
az acr build --registry invoiceacr --image invoice-inference:v1 .
# 3. 创建 Container Apps 环境
az containerapp env create \
--name invoice-env \
--resource-group myRG \
--location eastus
# 4. 部署应用
az containerapp create \
--name invoice-inference \
--resource-group myRG \
--environment invoice-env \
--image invoiceacr.azurecr.io/invoice-inference:v1 \
--registry-server invoiceacr.azurecr.io \
--cpu 2 --memory 4Gi \
--min-replicas 1 --max-replicas 10 \
--ingress external --target-port 8000
# 5. 获取 URL
az containerapp show --name invoice-inference --resource-group myRG --query properties.configuration.ingress.fqdn
```
### 高吞吐场景: Serverless GPU
如果需要 GPU 加速推理(高并发、低延迟):
```bash
# 请求 GPU 配额
az containerapp env workload-profile add \
--name invoice-env \
--resource-group myRG \
--workload-profile-name gpu \
--workload-profile-type Consumption-GPU-T4
# 部署 GPU 版本
az containerapp create \
--name invoice-inference-gpu \
--resource-group myRG \
--environment invoice-env \
--image invoiceacr.azurecr.io/invoice-inference-gpu:v1 \
--workload-profile-name gpu \
--cpu 4 --memory 8Gi \
--min-replicas 0 --max-replicas 5 \
--ingress external --target-port 8000
```
### 推理性能对比
| 配置 | 单次推理时间 | 并发能力 | 月费估算 |
|------|------------|---------|---------|
| CPU 2核 4GB | ~300-500ms | ~50 QPS | ~$30 |
| CPU 4核 8GB | ~200-300ms | ~100 QPS | ~$60 |
| GPU T4 | ~50-100ms | ~200 QPS | 按秒计费 |
| GPU A100 | ~20-50ms | ~500 QPS | 按秒计费 |
---
## 价格对比
### 月度成本对比(假设每天训练 2 小时)
| 方案 | 计算方式 | 月费 |
|------|---------|------|
| VM 24/7 运行 | 24h × 30天 × $3.06 | ~$2,200 |
| VM 按需启停 | 2h × 30天 × $3.06 | ~$184 |
| VM Spot 按需 | 2h × 30天 × $0.92 | ~$55 |
| Serverless GPU | 2h × 30天 × ~$3.50 | ~$210 |
| Azure ML (min=0) | 2h × 30天 × $3.06 | ~$184 |
### 本项目完整成本估算
| 组件 | 推荐方案 | 月费 |
|------|---------|------|
| 图片存储 | Blob Storage (Hot) | ~$0.10 |
| 数据库 | PostgreSQL Flexible (Burstable B1ms) | ~$25 |
| 推理服务 | Container Apps CPU (2核4GB) | ~$30 |
| 训练服务 | Azure ML Spot (按需) | ~$1-5/次 |
| Container Registry | Basic | ~$5 |
| **总计** | | **~$65/月** + 训练费 |
---
## 推荐架构
### 整体架构图
```
┌─────────────────────────────────────┐
│ Azure Blob Storage │
│ ├── training-images/ │
│ ├── datasets/ │
│ └── models/ │
└─────────────────┬───────────────────┘
┌─────────────────────────────────┼─────────────────────────────────┐
│ │ │
▼ ▼ ▼
┌───────────────────────┐ ┌───────────────────────┐ ┌───────────────────────┐
│ 推理服务 (24/7) │ │ 训练服务 (按需) │ │ Web UI (可选) │
│ Container Apps │ │ Azure ML Compute │ │ Static Web Apps │
│ CPU 2核 4GB │ │ min=0, Spot │ │ ~$0 (免费层) │
│ ~$30/月 │ │ ~$1-5/次训练 │ │ │
│ │ │ │ │ │
│ ┌───────────────────┐ │ │ ┌───────────────────┐ │ │ ┌───────────────────┐ │
│ │ FastAPI + YOLO │ │ │ │ YOLOv11 Training │ │ │ │ React/Vue 前端 │ │
│ │ /api/v1/infer │ │ │ │ 100 epochs │ │ │ │ 上传发票界面 │ │
│ └───────────────────┘ │ │ └───────────────────┘ │ │ └───────────────────┘ │
└───────────┬───────────┘ └───────────┬───────────┘ └───────────┬───────────┘
│ │ │
└───────────────────────────────┼───────────────────────────────┘
┌───────────────────────┐
│ PostgreSQL │
│ Flexible Server │
│ Burstable B1ms │
│ ~$25/月 │
└───────────────────────┘
```
### 推理服务配置
```yaml
# Container Apps - CPU (24/7 运行)
name: invoice-inference
resources:
cpu: 2
memory: 4Gi
scale:
minReplicas: 1
maxReplicas: 10
env:
- name: MODEL_PATH
value: /app/models/best.pt
- name: DB_HOST
secretRef: db-host
- name: DB_PASSWORD
secretRef: db-password
```
### 训练服务配置
**方案 A: Azure ML Compute推荐**
```python
from azure.ai.ml.entities import AmlCompute
gpu_cluster = AmlCompute(
name="gpu-cluster",
size="Standard_NC6s_v3",
min_instances=0, # 空闲时关机
max_instances=1,
tier="LowPriority", # Spot 实例
idle_time_before_scale_down=120
)
```
**方案 B: Container Apps Serverless GPU**
```yaml
name: invoice-training
resources:
gpu: 1
gpuType: A100
scale:
minReplicas: 0
maxReplicas: 1
```
---
## 实施步骤
### 阶段 1: 存储设置
```bash
# 创建 Storage Account
az storage account create \
--name invoicestorage \
--resource-group myRG \
--sku Standard_LRS
# 创建容器
az storage container create --name training-images --account-name invoicestorage
az storage container create --name datasets --account-name invoicestorage
az storage container create --name models --account-name invoicestorage
# 上传训练数据
az storage blob upload-batch \
--destination training-images \
--source ./data/dataset/temp \
--account-name invoicestorage
```
### 阶段 2: 数据库设置
```bash
# 创建 PostgreSQL
az postgres flexible-server create \
--name invoice-db \
--resource-group myRG \
--sku-name Standard_B1ms \
--storage-size 32 \
--admin-user docmaster \
--admin-password YOUR_PASSWORD
# 配置防火墙
az postgres flexible-server firewall-rule create \
--name allow-azure \
--resource-group myRG \
--server-name invoice-db \
--start-ip-address 0.0.0.0 \
--end-ip-address 0.0.0.0
```
### 阶段 3: 推理服务部署
```bash
# 创建 Container Registry
az acr create --name invoiceacr --resource-group myRG --sku Basic
# 构建镜像
az acr build --registry invoiceacr --image invoice-inference:v1 .
# 创建环境
az containerapp env create \
--name invoice-env \
--resource-group myRG \
--location eastus
# 部署推理服务
az containerapp create \
--name invoice-inference \
--resource-group myRG \
--environment invoice-env \
--image invoiceacr.azurecr.io/invoice-inference:v1 \
--registry-server invoiceacr.azurecr.io \
--cpu 2 --memory 4Gi \
--min-replicas 1 --max-replicas 10 \
--ingress external --target-port 8000 \
--env-vars \
DB_HOST=invoice-db.postgres.database.azure.com \
DB_NAME=docmaster \
DB_USER=docmaster \
--secrets db-password=YOUR_PASSWORD
```
### 阶段 4: 训练服务设置
```bash
# 创建 Azure ML Workspace
az ml workspace create --name invoice-ml --resource-group myRG
# 创建 Compute Cluster
az ml compute create --name gpu-cluster \
--type AmlCompute \
--size Standard_NC6s_v3 \
--min-instances 0 \
--max-instances 1 \
--tier low_priority
```
### 阶段 5: 集成训练触发 API
```python
# src/web/routes/training.py
from fastapi import APIRouter
from azure.ai.ml import MLClient, command
from azure.identity import DefaultAzureCredential
router = APIRouter()
ml_client = MLClient(
credential=DefaultAzureCredential(),
subscription_id="your-subscription-id",
resource_group_name="myRG",
workspace_name="invoice-ml"
)
@router.post("/api/v1/train")
async def trigger_training(request: TrainingRequest):
"""触发 Azure ML 训练任务"""
training_job = command(
code="./training",
command=f"python train.py --epochs {request.epochs}",
environment="AzureML-pytorch-2.0-cuda11.8@latest",
compute="gpu-cluster",
)
job = ml_client.jobs.create_or_update(training_job)
return {
"job_id": job.name,
"status": job.status,
"studio_url": job.studio_url
}
@router.get("/api/v1/train/{job_id}/status")
async def get_training_status(job_id: str):
"""查询训练状态"""
job = ml_client.jobs.get(job_id)
return {"status": job.status}
```
---
## 总结
### 推荐配置
| 组件 | 推荐方案 | 月费估算 |
|------|---------|---------|
| 图片存储 | Blob Storage (Hot) | ~$0.10 |
| 数据库 | PostgreSQL Flexible | ~$25 |
| 推理服务 | Container Apps CPU | ~$30 |
| 训练服务 | Azure ML (min=0, Spot) | 按需 ~$1-5/次 |
| Container Registry | Basic | ~$5 |
| **总计** | | **~$65/月** + 训练费 |
### 关键决策
| 场景 | 选择 |
|------|------|
| 偶尔训练,简单需求 | Azure VM Spot + 手动启停 |
| 需要 MLOps团队协作 | Azure ML Compute |
| 追求最低空闲成本 | Container Apps Serverless GPU |
| 生产环境推理 | Container Apps CPU |
| 高并发推理 | Container Apps Serverless GPU |
### 注意事项
1. **冷启动**: Serverless GPU 启动需要 3-8 分钟
2. **Spot 中断**: 可能被抢占,需要检查点机制
3. **网络延迟**: Blob Storage 挂载比本地 SSD 慢,建议开启缓存
4. **区域选择**: 选择有 GPU 配额的区域 (East US, West Europe 等)
5. **推理优化**: CPU 推理对于 YOLO 已经足够,无需 GPU

View File

@@ -0,0 +1,647 @@
# Dashboard Design Specification
## Overview
Dashboard 是用户进入系统后的第一个页面,用于快速了解:
- 数据标注质量和进度
- 当前模型状态和性能
- 系统最近发生的活动
**目标用户**:使用文档标注系统的客户,需要监控文档处理状态、标注质量和模型训练进度。
---
## 1. UI Layout
### 1.1 Overall Structure
```
+------------------------------------------------------------------+
| Header: Logo + Navigation + User Menu |
+------------------------------------------------------------------+
| |
| Stats Cards Row (4 cards, equal width) |
| |
| +---------------------------+ +------------------------------+ |
| | Data Quality Panel (50%) | | Active Model Panel (50%) | |
| +---------------------------+ +------------------------------+ |
| |
| +--------------------------------------------------------------+ |
| | Recent Activity Panel (full width) | |
| +--------------------------------------------------------------+ |
| |
| +--------------------------------------------------------------+ |
| | System Status Bar (full width) | |
| +--------------------------------------------------------------+ |
+------------------------------------------------------------------+
```
### 1.2 Responsive Breakpoints
| Breakpoint | Layout |
|------------|--------|
| Desktop (>1200px) | 4 cards row, 2-column panels |
| Tablet (768-1200px) | 2x2 cards, 2-column panels |
| Mobile (<768px) | 1 card per row, stacked panels |
---
## 2. Component Specifications
### 2.1 Stats Cards Row
4 个等宽卡片显示核心统计数据
```
+-------------+ +-------------+ +-------------+ +-------------+
| [icon] | | [icon] | | [icon] | | [icon] |
| 38 | | 25 | | 8 | | 5 |
| Total Docs | | Complete | | Incomplete | | Pending |
+-------------+ +-------------+ +-------------+ +-------------+
```
| Card | Icon | Value | Label | Color | Click Action |
|------|------|-------|-------|-------|--------------|
| Total Documents | FileText | `total_documents` | "Total Documents" | Gray | Navigate to Documents page |
| Complete | CheckCircle | `annotation_complete` | "Complete" | Green | Navigate to Documents (filter: complete) |
| Incomplete | AlertCircle | `annotation_incomplete` | "Incomplete" | Orange | Navigate to Documents (filter: incomplete) |
| Pending | Clock | `pending` | "Pending" | Blue | Navigate to Documents (filter: pending) |
**Card Design:**
- Background: White with subtle border
- Icon: 24px, positioned top-left
- Value: 32px bold font
- Label: 14px muted color
- Hover: Slight shadow elevation
- Padding: 16px
### 2.2 Data Quality Panel
左侧面板显示标注完整度和质量指标
```
+---------------------------+
| DATA QUALITY |
| +-----------+ |
| | | |
| | 78% | Annotation |
| | | Complete |
| +-----------+ |
| |
| Complete: 25 |
| Incomplete: 8 |
| Pending: 5 |
| |
| [View Incomplete Docs] |
+---------------------------+
```
**Components:**
| Element | Spec |
|---------|------|
| Title | "DATA QUALITY", 14px uppercase, muted |
| Progress Ring | 120px diameter, stroke width 12px |
| Percentage | 36px bold, centered in ring |
| Label | "Annotation Complete", 14px, below ring |
| Stats List | 14px, icon + label + value per row |
| Action Button | Text button, primary color |
**Progress Ring Colors:**
- Complete portion: Green (#22C55E)
- Remaining: Gray (#E5E7EB)
**Completeness Calculation:**
```
completeness_rate = annotation_complete / (annotation_complete + annotation_incomplete) * 100
```
### 2.3 Active Model Panel
右侧面板显示当前生产模型信息
```
+-------------------------------+
| ACTIVE MODEL |
| |
| v1.2.0 - Invoice Model |
| ----------------------------- |
| |
| mAP Precision Recall |
| 95.1% 94% 92% |
| |
| Activated: 2024-01-20 |
| Documents: 500 |
| |
| [Training] Run-2024-02 [====] |
+-------------------------------+
```
**Components:**
| Element | Spec |
|---------|------|
| Title | "ACTIVE MODEL", 14px uppercase, muted |
| Version + Name | 18px bold (version) + 16px regular (name) |
| Divider | 1px border, full width |
| Metrics Row | 3 columns, equal width |
| Metric Value | 24px bold |
| Metric Label | 12px muted, below value |
| Info Rows | 14px, label: value format |
| Training Indicator | Shows when training is running |
**Metric Colors:**
- mAP >= 90%: Green
- mAP 80-90%: Yellow
- mAP < 80%: Red
**Empty State (No Active Model):**
```
+-------------------------------+
| ACTIVE MODEL |
| |
| [icon: Model] |
| No Active Model |
| |
| Train and activate a |
| model to see stats here |
| |
| [Go to Training] |
+-------------------------------+
```
**Training In Progress:**
```
| Training: Run-2024-02 |
| [=========> ] 45% |
| Started 2 hours ago |
```
### 2.4 Recent Activity Panel
全宽面板显示最近 10 条系统活动
```
+--------------------------------------------------------------+
| RECENT ACTIVITY [See All] |
+--------------------------------------------------------------+
| [rocket] Activated model v1.2.0 2 hours ago|
| [check] Training complete: Run-2024-01, mAP 95.1% yesterday|
| [edit] Modified INV-001.pdf invoice_number yesterday|
| [doc] Uploaded INV-005.pdf 2 days ago|
| [doc] Uploaded INV-004.pdf 2 days ago|
| [x] Training failed: Run-2024-00 3 days ago|
+--------------------------------------------------------------+
```
**Activity Item Layout:**
```
[Icon] [Description] [Timestamp]
```
| Element | Spec |
|---------|------|
| Icon | 16px, color based on type |
| Description | 14px, truncate if too long |
| Timestamp | 12px muted, right-aligned |
| Row Height | 40px |
| Hover | Background highlight |
**Activity Types and Icons:**
| Type | Icon | Color | Description Format |
|------|------|-------|-------------------|
| document_uploaded | FileText | Blue | "Uploaded {filename}" |
| annotation_modified | Edit | Orange | "Modified {filename} {field_name}" |
| training_completed | CheckCircle | Green | "Training complete: {task_name}, mAP {mAP}%" |
| training_failed | XCircle | Red | "Training failed: {task_name}" |
| model_activated | Rocket | Purple | "Activated model {version}" |
**Timestamp Formatting:**
- < 1 minute: "just now"
- < 1 hour: "{n} minutes ago"
- < 24 hours: "{n} hours ago"
- < 7 days: "yesterday" / "{n} days ago"
- >= 7 days: "Jan 15" (date format)
**Empty State:**
```
+--------------------------------------------------------------+
| RECENT ACTIVITY |
| |
| [icon: Activity] |
| No recent activity |
| |
| Start by uploading documents or creating training jobs |
+--------------------------------------------------------------+
```
### 2.5 System Status Bar
底部状态栏,显示系统健康状态。
```
+--------------------------------------------------------------+
| Backend API: [*] Online Database: [*] Connected GPU: [*] Available |
+--------------------------------------------------------------+
```
| Status | Icon | Color |
|--------|------|-------|
| Online/Connected/Available | Filled circle | Green |
| Degraded/Slow | Filled circle | Yellow |
| Offline/Error/Unavailable | Filled circle | Red |
---
## 3. API Endpoints
### 3.1 Dashboard Statistics
```
GET /api/v1/admin/dashboard/stats
```
**Response:**
```json
{
"total_documents": 38,
"annotation_complete": 25,
"annotation_incomplete": 8,
"pending": 5,
"completeness_rate": 75.76
}
```
**Calculation Logic:**
```python
# annotation_complete: labeled documents with core fields
SELECT COUNT(*) FROM admin_documents d
WHERE d.status = 'labeled'
AND EXISTS (
SELECT 1 FROM admin_annotations a
WHERE a.document_id = d.document_id
AND a.class_id IN (0, 3) -- invoice_number OR ocr_number
)
AND EXISTS (
SELECT 1 FROM admin_annotations a
WHERE a.document_id = d.document_id
AND a.class_id IN (4, 5) -- bankgiro OR plusgiro
)
# annotation_incomplete: labeled but missing core fields
SELECT COUNT(*) FROM admin_documents d
WHERE d.status = 'labeled'
AND NOT (/* above conditions */)
# pending: pending + auto_labeling
SELECT COUNT(*) FROM admin_documents
WHERE status IN ('pending', 'auto_labeling')
```
### 3.2 Active Model Info
```
GET /api/v1/admin/dashboard/active-model
```
**Response (with active model):**
```json
{
"model": {
"version_id": "uuid",
"version": "1.2.0",
"name": "Invoice Model",
"metrics_mAP": 0.951,
"metrics_precision": 0.94,
"metrics_recall": 0.92,
"document_count": 500,
"activated_at": "2024-01-20T15:00:00Z"
},
"running_training": {
"task_id": "uuid",
"name": "Run-2024-02",
"status": "running",
"started_at": "2024-01-25T10:00:00Z",
"progress": 45
}
}
```
**Response (no active model):**
```json
{
"model": null,
"running_training": null
}
```
### 3.3 Recent Activity
```
GET /api/v1/admin/dashboard/activity?limit=10
```
**Response:**
```json
{
"activities": [
{
"type": "model_activated",
"description": "Activated model v1.2.0",
"timestamp": "2024-01-25T12:00:00Z",
"metadata": {
"version_id": "uuid",
"version": "1.2.0"
}
},
{
"type": "training_completed",
"description": "Training complete: Run-2024-01, mAP 95.1%",
"timestamp": "2024-01-24T18:30:00Z",
"metadata": {
"task_id": "uuid",
"task_name": "Run-2024-01",
"mAP": 0.951
}
}
]
}
```
**Activity Aggregation Query:**
```sql
-- Union all activity sources, ordered by timestamp DESC, limit 10
(
SELECT 'document_uploaded' as type,
filename as entity_name,
created_at as timestamp,
document_id as entity_id
FROM admin_documents
ORDER BY created_at DESC
LIMIT 10
)
UNION ALL
(
SELECT 'annotation_modified' as type,
-- join to get filename and field name
...
FROM annotation_history
ORDER BY created_at DESC
LIMIT 10
)
UNION ALL
(
SELECT CASE WHEN status = 'completed' THEN 'training_completed'
WHEN status = 'failed' THEN 'training_failed' END as type,
name as entity_name,
completed_at as timestamp,
task_id as entity_id
FROM training_tasks
WHERE status IN ('completed', 'failed')
ORDER BY completed_at DESC
LIMIT 10
)
UNION ALL
(
SELECT 'model_activated' as type,
version as entity_name,
activated_at as timestamp,
version_id as entity_id
FROM model_versions
WHERE activated_at IS NOT NULL
ORDER BY activated_at DESC
LIMIT 10
)
ORDER BY timestamp DESC
LIMIT 10
```
---
## 4. UX Interactions
### 4.1 Loading States
| Component | Loading State |
|-----------|--------------|
| Stats Cards | Skeleton placeholder (gray boxes) |
| Data Quality Ring | Skeleton circle |
| Active Model | Skeleton lines |
| Recent Activity | Skeleton list items (5 rows) |
**Loading Duration Thresholds:**
- < 300ms: No loading state shown
- 300ms - 3s: Show skeleton
- > 3s: Show skeleton + "Taking longer than expected" message
### 4.2 Error States
| Error Type | Display |
|------------|---------|
| API Error | Toast notification + retry button in affected panel |
| Network Error | Full page overlay with retry option |
| Partial Failure | Show available data, error badge on failed sections |
### 4.3 Refresh Behavior
| Trigger | Behavior |
|---------|----------|
| Page Load | Fetch all data |
| Manual Refresh | Button in header, refetch all |
| Auto Refresh | Every 30 seconds for activity panel |
| Focus Return | Refetch if page was hidden > 5 minutes |
### 4.4 Click Actions
| Element | Action |
|---------|--------|
| Total Documents card | Navigate to `/documents` |
| Complete card | Navigate to `/documents?filter=complete` |
| Incomplete card | Navigate to `/documents?filter=incomplete` |
| Pending card | Navigate to `/documents?filter=pending` |
| "View Incomplete Docs" button | Navigate to `/documents?filter=incomplete` |
| Activity item | Navigate to related entity |
| "Go to Training" button | Navigate to `/training` |
| Active Model version | Navigate to `/models/{version_id}` |
### 4.5 Tooltips
| Element | Tooltip Content |
|---------|----------------|
| Completeness % | "25 of 33 labeled documents have complete annotations" |
| mAP metric | "Mean Average Precision at IoU 0.5" |
| Precision metric | "Proportion of correct positive predictions" |
| Recall metric | "Proportion of actual positives correctly identified" |
| Incomplete count | "Documents labeled but missing invoice_number/ocr_number or bankgiro/plusgiro" |
---
## 5. Data Model
### 5.1 TypeScript Types
```typescript
// Dashboard Stats
interface DashboardStats {
total_documents: number;
annotation_complete: number;
annotation_incomplete: number;
pending: number;
completeness_rate: number;
}
// Active Model
interface ActiveModelInfo {
model: ModelVersion | null;
running_training: RunningTraining | null;
}
interface ModelVersion {
version_id: string;
version: string;
name: string;
metrics_mAP: number;
metrics_precision: number;
metrics_recall: number;
document_count: number;
activated_at: string;
}
interface RunningTraining {
task_id: string;
name: string;
status: 'running';
started_at: string;
progress: number;
}
// Activity
interface Activity {
type: ActivityType;
description: string;
timestamp: string;
metadata: Record<string, unknown>;
}
type ActivityType =
| 'document_uploaded'
| 'annotation_modified'
| 'training_completed'
| 'training_failed'
| 'model_activated';
// Activity Response
interface ActivityResponse {
activities: Activity[];
}
```
### 5.2 React Query Hooks
```typescript
// useDashboardStats
const useDashboardStats = () => {
return useQuery({
queryKey: ['dashboard', 'stats'],
queryFn: () => api.get('/admin/dashboard/stats'),
refetchInterval: 30000, // 30 seconds
});
};
// useActiveModel
const useActiveModel = () => {
return useQuery({
queryKey: ['dashboard', 'active-model'],
queryFn: () => api.get('/admin/dashboard/active-model'),
refetchInterval: 60000, // 1 minute
});
};
// useRecentActivity
const useRecentActivity = (limit = 10) => {
return useQuery({
queryKey: ['dashboard', 'activity', limit],
queryFn: () => api.get(`/admin/dashboard/activity?limit=${limit}`),
refetchInterval: 30000,
});
};
```
---
## 6. Annotation Completeness Definition
### 6.1 Core Fields
A document is **complete** when it has annotations for:
| Requirement | Fields | Logic |
|-------------|--------|-------|
| Identifier | `invoice_number` (class_id=0) OR `ocr_number` (class_id=3) | At least one |
| Payment Account | `bankgiro` (class_id=4) OR `plusgiro` (class_id=5) | At least one |
### 6.2 Status Categories
| Category | Criteria |
|----------|----------|
| **Complete** | status=labeled AND has identifier AND has payment account |
| **Incomplete** | status=labeled AND (missing identifier OR missing payment account) |
| **Pending** | status IN (pending, auto_labeling) |
### 6.3 Filter Implementation
```sql
-- Complete documents
WHERE status = 'labeled'
AND document_id IN (
SELECT document_id FROM admin_annotations WHERE class_id IN (0, 3)
)
AND document_id IN (
SELECT document_id FROM admin_annotations WHERE class_id IN (4, 5)
)
-- Incomplete documents
WHERE status = 'labeled'
AND (
document_id NOT IN (
SELECT document_id FROM admin_annotations WHERE class_id IN (0, 3)
)
OR document_id NOT IN (
SELECT document_id FROM admin_annotations WHERE class_id IN (4, 5)
)
)
```
---
## 7. Implementation Checklist
### Backend
- [ ] Create `/api/v1/admin/dashboard/stats` endpoint
- [ ] Create `/api/v1/admin/dashboard/active-model` endpoint
- [ ] Create `/api/v1/admin/dashboard/activity` endpoint
- [ ] Add completeness calculation logic to document repository
- [ ] Implement activity aggregation query
### Frontend
- [ ] Create `DashboardOverview` component
- [ ] Create `StatsCard` component
- [ ] Create `DataQualityPanel` component with progress ring
- [ ] Create `ActiveModelPanel` component
- [ ] Create `RecentActivityPanel` component
- [ ] Create `SystemStatusBar` component
- [ ] Add React Query hooks for dashboard data
- [ ] Implement loading skeletons
- [ ] Implement error states
- [ ] Add navigation actions
- [ ] Add tooltips
### Testing
- [ ] Unit tests for completeness calculation
- [ ] Unit tests for activity aggregation
- [ ] Integration tests for dashboard endpoints
- [ ] E2E tests for dashboard interactions

View File

@@ -1,619 +0,0 @@
# 多池处理架构设计文档
## 1. 研究总结
### 1.1 当前问题分析
我们之前实现的双池模式存在稳定性问题,主要原因:
| 问题 | 原因 | 解决方案 |
|------|------|----------|
| 处理卡住 | 线程 + ProcessPoolExecutor 混用导致死锁 | 使用 asyncio 或纯 Queue 模式 |
| Queue.get() 无限阻塞 | 没有超时机制 | 添加 timeout 和哨兵值 |
| GPU 内存冲突 | 多进程同时访问 GPU | 限制 GPU worker = 1 |
| CUDA fork 问题 | Linux 默认 fork 不兼容 CUDA | 使用 spawn 启动方式 |
### 1.2 推荐架构方案
经过研究,最适合我们场景的方案是 **生产者-消费者队列模式**
```
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Main Process │ │ CPU Workers │ │ GPU Worker │
│ │ │ (4 processes) │ │ (1 process) │
│ ┌───────────┐ │ │ │ │ │
│ │ Task │──┼────▶│ Text PDF处理 │ │ Scanned PDF处理 │
│ │ Dispatcher│ │ │ (无需OCR) │ │ (PaddleOCR) │
│ └───────────┘ │ │ │ │ │
│ ▲ │ │ │ │ │ │ │
│ │ │ │ ▼ │ │ ▼ │
│ ┌───────────┐ │ │ Result Queue │ │ Result Queue │
│ │ Result │◀─┼─────│◀────────────────│─────│◀────────────────│
│ │ Collector │ │ │ │ │ │
│ └───────────┘ │ └─────────────────┘ └─────────────────┘
│ │ │
│ ▼ │
│ ┌───────────┐ │
│ │ Database │ │
│ │ Batch │ │
│ │ Writer │ │
│ └───────────┘ │
└─────────────────┘
```
---
## 2. 核心设计原则
### 2.1 CUDA 兼容性
```python
# 关键:使用 spawn 启动方式
import multiprocessing as mp
ctx = mp.get_context("spawn")
# GPU worker 初始化时设置设备
def init_gpu_worker(gpu_id: int = 0):
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
global _ocr
from paddleocr import PaddleOCR
_ocr = PaddleOCR(use_gpu=True, ...)
```
### 2.2 Worker 初始化模式
使用 `initializer` 参数一次性加载模型,避免每个任务重新加载:
```python
# 全局变量保存模型
_ocr = None
def init_worker(use_gpu: bool, gpu_id: int = 0):
global _ocr
if use_gpu:
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
from paddleocr import PaddleOCR
_ocr = PaddleOCR(use_gpu=use_gpu, ...)
# 创建 Pool 时使用 initializer
pool = ProcessPoolExecutor(
max_workers=1,
initializer=init_worker,
initargs=(True, 0), # use_gpu=True, gpu_id=0
mp_context=mp.get_context("spawn")
)
```
### 2.3 队列模式 vs as_completed
| 方式 | 优点 | 缺点 | 适用场景 |
|------|------|------|----------|
| `as_completed()` | 简单、无需管理队列 | 无法跨多个 Pool 使用 | 单池场景 |
| `multiprocessing.Queue` | 高性能、灵活 | 需要手动管理、死锁风险 | 多池流水线 |
| `Manager().Queue()` | 可 pickle、跨 Pool | 性能较低 | 需要 Pool.map 场景 |
**推荐**:对于双池场景,使用 `as_completed()` 分别处理每个池,然后合并结果。
---
## 3. 详细开发计划
### 阶段 1重构基础架构 (2-3天)
#### 1.1 创建 WorkerPool 抽象类
```python
# src/processing/worker_pool.py
from __future__ import annotations
from abc import ABC, abstractmethod
from concurrent.futures import ProcessPoolExecutor, Future
from dataclasses import dataclass
from typing import List, Any, Optional, Callable
import multiprocessing as mp
@dataclass
class TaskResult:
"""任务结果容器"""
task_id: str
success: bool
data: Any
error: Optional[str] = None
processing_time: float = 0.0
class WorkerPool(ABC):
"""Worker Pool 抽象基类"""
def __init__(self, max_workers: int, use_gpu: bool = False, gpu_id: int = 0):
self.max_workers = max_workers
self.use_gpu = use_gpu
self.gpu_id = gpu_id
self._executor: Optional[ProcessPoolExecutor] = None
@abstractmethod
def get_initializer(self) -> Callable:
"""返回 worker 初始化函数"""
pass
@abstractmethod
def get_init_args(self) -> tuple:
"""返回初始化参数"""
pass
def start(self):
"""启动 worker pool"""
ctx = mp.get_context("spawn")
self._executor = ProcessPoolExecutor(
max_workers=self.max_workers,
mp_context=ctx,
initializer=self.get_initializer(),
initargs=self.get_init_args()
)
def submit(self, fn: Callable, *args, **kwargs) -> Future:
"""提交任务"""
if not self._executor:
raise RuntimeError("Pool not started")
return self._executor.submit(fn, *args, **kwargs)
def shutdown(self, wait: bool = True):
"""关闭 pool"""
if self._executor:
self._executor.shutdown(wait=wait)
self._executor = None
def __enter__(self):
self.start()
return self
def __exit__(self, *args):
self.shutdown()
```
#### 1.2 实现 CPU 和 GPU Worker Pool
```python
# src/processing/cpu_pool.py
class CPUWorkerPool(WorkerPool):
"""CPU-only worker pool for text PDF processing"""
def __init__(self, max_workers: int = 4):
super().__init__(max_workers=max_workers, use_gpu=False)
def get_initializer(self) -> Callable:
return init_cpu_worker
def get_init_args(self) -> tuple:
return ()
# src/processing/gpu_pool.py
class GPUWorkerPool(WorkerPool):
"""GPU worker pool for OCR processing"""
def __init__(self, max_workers: int = 1, gpu_id: int = 0):
super().__init__(max_workers=max_workers, use_gpu=True, gpu_id=gpu_id)
def get_initializer(self) -> Callable:
return init_gpu_worker
def get_init_args(self) -> tuple:
return (self.gpu_id,)
```
---
### 阶段 2实现双池协调器 (2-3天)
#### 2.1 任务分发器
```python
# src/processing/task_dispatcher.py
from dataclasses import dataclass
from enum import Enum, auto
from typing import List, Tuple
class TaskType(Enum):
CPU = auto() # Text PDF
GPU = auto() # Scanned PDF
@dataclass
class Task:
id: str
task_type: TaskType
data: Any
class TaskDispatcher:
"""根据 PDF 类型分发任务到不同的 pool"""
def classify_task(self, doc_info: dict) -> TaskType:
"""判断文档是否需要 OCR"""
# 基于 PDF 特征判断
if self._is_scanned_pdf(doc_info):
return TaskType.GPU
return TaskType.CPU
def _is_scanned_pdf(self, doc_info: dict) -> bool:
"""检测是否为扫描件"""
# 1. 检查是否有可提取文本
# 2. 检查图片比例
# 3. 检查文本密度
pass
def partition_tasks(self, tasks: List[Task]) -> Tuple[List[Task], List[Task]]:
"""将任务分为 CPU 和 GPU 两组"""
cpu_tasks = [t for t in tasks if t.task_type == TaskType.CPU]
gpu_tasks = [t for t in tasks if t.task_type == TaskType.GPU]
return cpu_tasks, gpu_tasks
```
#### 2.2 双池协调器
```python
# src/processing/dual_pool_coordinator.py
from concurrent.futures import as_completed
from typing import List, Iterator
import logging
logger = logging.getLogger(__name__)
class DualPoolCoordinator:
"""协调 CPU 和 GPU 两个 worker pool"""
def __init__(
self,
cpu_workers: int = 4,
gpu_workers: int = 1,
gpu_id: int = 0
):
self.cpu_pool = CPUWorkerPool(max_workers=cpu_workers)
self.gpu_pool = GPUWorkerPool(max_workers=gpu_workers, gpu_id=gpu_id)
self.dispatcher = TaskDispatcher()
def __enter__(self):
self.cpu_pool.start()
self.gpu_pool.start()
return self
def __exit__(self, *args):
self.cpu_pool.shutdown()
self.gpu_pool.shutdown()
def process_batch(
self,
documents: List[dict],
cpu_task_fn: Callable,
gpu_task_fn: Callable,
on_result: Optional[Callable[[TaskResult], None]] = None,
on_error: Optional[Callable[[str, Exception], None]] = None
) -> List[TaskResult]:
"""
处理一批文档,自动分发到 CPU 或 GPU pool
Args:
documents: 待处理文档列表
cpu_task_fn: CPU 任务处理函数
gpu_task_fn: GPU 任务处理函数
on_result: 结果回调(可选)
on_error: 错误回调(可选)
Returns:
所有任务结果列表
"""
# 分类任务
tasks = [
Task(id=doc['id'], task_type=self.dispatcher.classify_task(doc), data=doc)
for doc in documents
]
cpu_tasks, gpu_tasks = self.dispatcher.partition_tasks(tasks)
logger.info(f"Task partition: {len(cpu_tasks)} CPU, {len(gpu_tasks)} GPU")
# 提交任务到各自的 pool
cpu_futures = {
self.cpu_pool.submit(cpu_task_fn, t.data): t.id
for t in cpu_tasks
}
gpu_futures = {
self.gpu_pool.submit(gpu_task_fn, t.data): t.id
for t in gpu_tasks
}
# 收集结果
results = []
all_futures = list(cpu_futures.keys()) + list(gpu_futures.keys())
for future in as_completed(all_futures):
task_id = cpu_futures.get(future) or gpu_futures.get(future)
pool_type = "CPU" if future in cpu_futures else "GPU"
try:
data = future.result(timeout=300) # 5分钟超时
result = TaskResult(task_id=task_id, success=True, data=data)
if on_result:
on_result(result)
except Exception as e:
logger.error(f"[{pool_type}] Task {task_id} failed: {e}")
result = TaskResult(task_id=task_id, success=False, data=None, error=str(e))
if on_error:
on_error(task_id, e)
results.append(result)
return results
```
---
### 阶段 3集成到 autolabel (1-2天)
#### 3.1 修改 autolabel.py
```python
# src/cli/autolabel.py
def run_autolabel_dual_pool(args):
"""使用双池模式运行自动标注"""
from src.processing.dual_pool_coordinator import DualPoolCoordinator
# 初始化数据库批处理
db_batch = []
db_batch_size = 100
def on_result(result: TaskResult):
"""处理成功结果"""
nonlocal db_batch
db_batch.append(result.data)
if len(db_batch) >= db_batch_size:
save_documents_batch(db_batch)
db_batch.clear()
def on_error(task_id: str, error: Exception):
"""处理错误"""
logger.error(f"Task {task_id} failed: {error}")
# 创建双池协调器
with DualPoolCoordinator(
cpu_workers=args.cpu_workers or 4,
gpu_workers=args.gpu_workers or 1,
gpu_id=0
) as coordinator:
# 处理所有 CSV
for csv_file in csv_files:
documents = load_documents_from_csv(csv_file)
results = coordinator.process_batch(
documents=documents,
cpu_task_fn=process_text_pdf,
gpu_task_fn=process_scanned_pdf,
on_result=on_result,
on_error=on_error
)
logger.info(f"CSV {csv_file}: {len(results)} processed")
# 保存剩余批次
if db_batch:
save_documents_batch(db_batch)
```
---
### 阶段 4测试与验证 (1-2天)
#### 4.1 单元测试
```python
# tests/unit/test_dual_pool.py
import pytest
from src.processing.dual_pool_coordinator import DualPoolCoordinator, TaskResult
class TestDualPoolCoordinator:
def test_cpu_only_batch(self):
"""测试纯 CPU 任务批处理"""
with DualPoolCoordinator(cpu_workers=2, gpu_workers=1) as coord:
docs = [{"id": f"doc_{i}", "type": "text"} for i in range(10)]
results = coord.process_batch(docs, cpu_fn, gpu_fn)
assert len(results) == 10
assert all(r.success for r in results)
def test_mixed_batch(self):
"""测试混合任务批处理"""
with DualPoolCoordinator(cpu_workers=2, gpu_workers=1) as coord:
docs = [
{"id": "text_1", "type": "text"},
{"id": "scan_1", "type": "scanned"},
{"id": "text_2", "type": "text"},
]
results = coord.process_batch(docs, cpu_fn, gpu_fn)
assert len(results) == 3
def test_timeout_handling(self):
"""测试超时处理"""
pass
def test_error_recovery(self):
"""测试错误恢复"""
pass
```
#### 4.2 集成测试
```python
# tests/integration/test_autolabel_dual_pool.py
def test_autolabel_with_dual_pool():
"""端到端测试双池模式"""
# 使用少量测试数据
result = subprocess.run([
"python", "-m", "src.cli.autolabel",
"--cpu-workers", "2",
"--gpu-workers", "1",
"--limit", "50"
], capture_output=True)
assert result.returncode == 0
# 验证数据库记录
```
---
## 4. 关键技术点
### 4.1 避免死锁的策略
```python
# 1. 使用 timeout
try:
result = future.result(timeout=300)
except TimeoutError:
logger.warning(f"Task timed out")
# 2. 使用哨兵值
SENTINEL = object()
queue.put(SENTINEL) # 发送结束信号
# 3. 检查进程状态
if not worker.is_alive():
logger.error("Worker died unexpectedly")
break
# 4. 先清空队列再 join
while not queue.empty():
results.append(queue.get_nowait())
worker.join(timeout=5.0)
```
### 4.2 PaddleOCR 特殊处理
```python
# PaddleOCR 必须在 worker 进程中初始化
def init_paddle_worker(gpu_id: int):
global _ocr
import os
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
# 延迟导入,确保 CUDA 环境变量生效
from paddleocr import PaddleOCR
_ocr = PaddleOCR(
use_angle_cls=True,
lang='en',
use_gpu=True,
show_log=False,
# 重要:设置 GPU 内存比例
gpu_mem=2000 # 限制 GPU 内存使用 (MB)
)
```
### 4.3 资源监控
```python
import psutil
import GPUtil
def get_resource_usage():
"""获取系统资源使用情况"""
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
gpu_info = []
for gpu in GPUtil.getGPUs():
gpu_info.append({
"id": gpu.id,
"memory_used": gpu.memoryUsed,
"memory_total": gpu.memoryTotal,
"utilization": gpu.load * 100
})
return {
"cpu_percent": cpu_percent,
"memory_percent": memory.percent,
"gpu": gpu_info
}
```
---
## 5. 风险评估与应对
| 风险 | 可能性 | 影响 | 应对策略 |
|------|--------|------|----------|
| GPU 内存不足 | 中 | 高 | 限制 GPU worker = 1设置 gpu_mem 参数 |
| 进程僵死 | 低 | 高 | 添加心跳检测,超时自动重启 |
| 任务分类错误 | 中 | 中 | 添加回退机制CPU 失败后尝试 GPU |
| 数据库写入瓶颈 | 低 | 中 | 增大批处理大小,异步写入 |
---
## 6. 备选方案
如果上述方案仍存在问题,可以考虑:
### 6.1 使用 Ray
```python
import ray
ray.init()
@ray.remote(num_cpus=1)
def cpu_task(data):
return process_text_pdf(data)
@ray.remote(num_gpus=1)
def gpu_task(data):
return process_scanned_pdf(data)
# 自动资源调度
futures = [cpu_task.remote(d) for d in cpu_docs]
futures += [gpu_task.remote(d) for d in gpu_docs]
results = ray.get(futures)
```
### 6.2 单池 + 动态 GPU 调度
保持单池模式,但在每个任务内部动态决定是否使用 GPU
```python
def process_document(doc_data):
if is_scanned_pdf(doc_data):
# 使用 GPU (需要全局锁或信号量控制并发)
with gpu_semaphore:
return process_with_ocr(doc_data)
else:
return process_text_only(doc_data)
```
---
## 7. 时间线总结
| 阶段 | 任务 | 预计工作量 |
|------|------|------------|
| 阶段 1 | 基础架构重构 | 2-3 天 |
| 阶段 2 | 双池协调器实现 | 2-3 天 |
| 阶段 3 | 集成到 autolabel | 1-2 天 |
| 阶段 4 | 测试与验证 | 1-2 天 |
| **总计** | | **6-10 天** |
---
## 8. 参考资料
1. [Python concurrent.futures 官方文档](https://docs.python.org/3/library/concurrent.futures.html)
2. [PyTorch Multiprocessing Best Practices](https://docs.pytorch.org/docs/stable/notes/multiprocessing.html)
3. [Super Fast Python - ProcessPoolExecutor 完整指南](https://superfastpython.com/processpoolexecutor-in-python/)
4. [PaddleOCR 并行推理文档](http://www.paddleocr.ai/main/en/version3.x/pipeline_usage/instructions/parallel_inference.html)
5. [AWS - 跨 CPU/GPU 并行化 ML 推理](https://aws.amazon.com/blogs/machine-learning/parallelizing-across-multiple-cpu-gpus-to-speed-up-deep-learning-inference-at-the-edge/)
6. [Ray 分布式多进程处理](https://docs.ray.io/en/latest/ray-more-libs/multiprocessing.html)

View File

@@ -0,0 +1,35 @@
# Product Plan v2 - Change Log
## [v2.1] - 2026-02-01
### New Features
#### Epic 7: Dashboard Enhancement
- Added **US-7.1**: Data quality metrics panel showing annotation completeness rate
- Added **US-7.2**: Active model status panel with mAP/precision/recall metrics
- Added **US-7.3**: Recent activity feed showing last 10 system activities
- Added **US-7.4**: Meaningful stats cards (Total/Complete/Incomplete/Pending)
#### Annotation Completeness Definition
- Defined "annotation complete" criteria:
- Must have `invoice_number` OR `ocr_number` (identifier)
- Must have `bankgiro` OR `plusgiro` (payment account)
### New API Endpoints
- Added `GET /api/v1/admin/dashboard/stats` - Dashboard statistics with completeness calculation
- Added `GET /api/v1/admin/dashboard/active-model` - Active model info with running training status
- Added `GET /api/v1/admin/dashboard/activity` - Recent activity feed aggregated from multiple sources
### New UI Components
- Added **5.0 Dashboard Overview** wireframe with:
- Stats cards row (Total/Complete/Incomplete/Pending)
- Data Quality panel with percentage ring
- Active Model panel with metrics display
- Recent Activity list with icons and relative timestamps
- System Status bar
---
## [v2.0] - 2024-01-15
- Initial version with Epic 1-6
- Batch upload, document management, annotation workflow, training management

1448
docs/product-plan-v2.md Normal file

File diff suppressed because it is too large Load Diff

54
docs/training-flow.mmd Normal file
View File

@@ -0,0 +1,54 @@
flowchart TD
A[CLI Entry Point\nsrc/cli/train.py] --> B[Parse Arguments\n--model, --epochs, --batch, --imgsz, etc.]
B --> C[Connect PostgreSQL\nDB_HOST / DB_NAME / DB_PASSWORD]
C --> D[Load Data from DB\nsrc/yolo/db_dataset.py]
D --> D1[Scan temp/doc_id/images/\nfor rendered PNGs]
D --> D2[Batch load field_results\nfrom database - batch 500]
D1 --> E[Create DBYOLODataset]
D2 --> E
E --> F[Split Train/Val/Test\n80% / 10% / 10%\nDocument-level, seed=42]
F --> G[Export to YOLO Format]
G --> G1[Copy images to\ntrain/val/test dirs]
G --> G2[Generate .txt labels\nclass x_center y_center w h]
G --> G3[Generate dataset.yaml\n+ classes.txt]
G --> G4[Coordinate Conversion\nPDF points 72DPI -> render DPI\nNormalize to 0-1]
G1 --> H{--export-only?}
G2 --> H
G3 --> H
G4 --> H
H -- Yes --> Z[Done - Dataset exported]
H -- No --> I[Load YOLO Model]
I --> I1{--resume?}
I1 -- Yes --> I2[Load last.pt checkpoint]
I1 -- No --> I3[Load pretrained model\ne.g. yolo11n.pt]
I2 --> J[Configure Training]
I3 --> J
J --> J1[Conservative Augmentation\nrotation=5 deg, translate=5%\nno flip, no mosaic, no mixup]
J --> J2[imgsz=1280, pretrained=True]
J1 --> K[model.train\nUltralytics Training Loop]
J2 --> K
K --> L[Training Outputs\nruns/train/name/]
L --> L1[weights/best.pt\nweights/last.pt]
L --> L2[results.csv + results.png\nTraining curves]
L --> L3[PR curves, F1 curves\nConfusion matrix]
L1 --> M[Test Set Validation\nmodel.val split=test]
M --> N[Report Metrics\nmAP@0.5 = 93.5%\nmAP@0.5-0.95]
N --> O[Close DB Connection]
style A fill:#4a90d9,color:#fff
style K fill:#e67e22,color:#fff
style N fill:#27ae60,color:#fff
style Z fill:#95a5a6,color:#fff

302
docs/ux-design-prompt-v2.md Normal file
View File

@@ -0,0 +1,302 @@
# Document Annotation Tool UX Design Spec v2
## Theme: Warm Graphite (Modern Enterprise)
---
## 1. Design Principles (Updated)
1. **Clarity** High contrast, but never pure black-on-white
2. **Warm Neutrality** Slightly warm grays reduce visual fatigue
3. **Focus** Content-first layouts with restrained accents
4. **Consistency** Reusable patterns, predictable behavior
5. **Professional Trust** Calm, serious, enterprise-ready
6. **Longevity** No trendy colors that age quickly
---
## 2. Color Palette (Warm Graphite)
### Core Colors
| Usage | Color Name | Hex |
|------|-----------|-----|
| Primary Text | Soft Black | #121212 |
| Secondary Text | Charcoal Gray | #2A2A2A |
| Muted Text | Warm Gray | #6B6B6B |
| Disabled Text | Light Warm Gray | #9A9A9A |
### Backgrounds
| Usage | Color | Hex |
|-----|------|-----|
| App Background | Paper White | #FAFAF8 |
| Card / Panel | White | #FFFFFF |
| Hover Surface | Subtle Warm Gray | #F1F0ED |
| Selected Row | Very Light Warm Gray | #ECEAE6 |
### Borders & Dividers
| Usage | Color | Hex |
|------|------|-----|
| Default Border | Warm Light Gray | #E6E4E1 |
| Strong Divider | Neutral Gray | #D8D6D2 |
### Semantic States (Muted & Professional)
| State | Color | Hex |
|------|-------|-----|
| Success | Olive Gray | #3E4A3A |
| Error | Brick Gray | #4A3A3A |
| Warning | Sand Gray | #4A4A3A |
| Info | Graphite Gray | #3A3A3A |
> Accent colors are **never saturated** and are used only for status, progress, or selection.
---
## 3. Typography
- **Font Family**: Inter / SF Pro / system-ui
- **Headings**:
- Weight: 600700
- Color: #121212
- Letter spacing: -0.01em
- **Body Text**:
- Weight: 400
- Color: #2A2A2A
- **Captions / Meta**:
- Weight: 400
- Color: #6B6B6B
- **Monospace (IDs / Values)**:
- JetBrains Mono / SF Mono
- Color: #2A2A2A
---
## 4. Global Layout
### Top Navigation Bar
- Height: 56px
- Background: #FAFAF8
- Bottom Border: 1px solid #E6E4E1
- Logo: Text or icon in #121212
**Navigation Items**
- Default: #6B6B6B
- Hover: #2A2A2A
- Active:
- Text: #121212
- Bottom indicator: 2px solid #3A3A3A (rounded ends)
**Avatar**
- Circle background: #ECEAE6
- Text: #2A2A2A
---
## 5. Page: Documents (Dashboard)
### Page Header
- Title: "Documents" (#121212)
- Actions:
- Primary button: Dark graphite outline
- Secondary button: Subtle border only
### Filters Bar
- Background: #FFFFFF
- Border: 1px solid #E6E4E1
- Inputs:
- Background: #FFFFFF
- Hover: #F1F0ED
- Focus ring: 1px #3A3A3A
### Document Table
- Table background: #FFFFFF
- Header text: #6B6B6B
- Row hover: #F1F0ED
- Row selected:
- Background: #ECEAE6
- Left indicator: 3px solid #3A3A3A
### Status Badges
- Pending:
- BG: #FFFFFF
- Border: #D8D6D2
- Text: #2A2A2A
- Labeled:
- BG: #2A2A2A
- Text: #FFFFFF
- Exported:
- BG: #ECEAE6
- Text: #2A2A2A
- Icon: ✓
### Auto-label States
- Running:
- Progress bar: #3A3A3A on #ECEAE6
- Completed:
- Text: #3E4A3A
- Failed:
- BG: #F1EDED
- Text: #4A3A3A
---
## 6. Upload Modals (Single & Batch)
### Modal Container
- Background: #FFFFFF
- Border radius: 8px
- Shadow: 0 1px 3px rgba(0,0,0,0.08)
### Drop Zone
- Background: #FAFAF8
- Border: 1px dashed #D8D6D2
- Hover: #F1F0ED
- Icon: Graphite gray
### Form Fields
- Input BG: #FFFFFF
- Border: #D8D6D2
- Focus: 1px solid #3A3A3A
Primary Action Button:
- Text: #FFFFFF
- BG: #2A2A2A
- Hover: #121212
---
## 7. Document Detail View
### Canvas Area
- Background: #FFFFFF
- Annotation styles:
- Manual: Solid border #2A2A2A
- Auto: Dashed border #6B6B6B
- Selected: 2px border #3A3A3A + resize handles
### Right Info Panel
- Card background: #FFFFFF
- Section headers: #121212
- Meta text: #6B6B6B
### Annotation Table
- Same table styles as Documents
- Inline edit:
- Input background: #FAFAF8
- Save button: Graphite
### Locked State (Auto-label Running)
- Banner BG: #FAFAF8
- Border-left: 3px solid #4A4A3A
- Progress bar: Graphite
---
## 8. Training Page
### Document Selector
- Selected rows use same highlight rules
- Verified state:
- Full: Olive gray check
- Partial: Sand gray warning
### Configuration Panel
- Card layout
- Inputs aligned to grid
- Schedule option visually muted until enabled
Primary CTA:
- Start Training button in dark graphite
---
## 9. Models & Training History
### Training Job List
- Job cards use #FFFFFF background
- Running job:
- Progress bar: #3A3A3A
- Completed job:
- Metrics bars in graphite
### Model Detail Panel
- Sectioned cards
- Metric bars:
- Track: #ECEAE6
- Fill: #3A3A3A
Actions:
- Primary: Download Model
- Secondary: View Logs / Use as Base
---
## 10. Micro-interactions (Refined)
| Element | Interaction | Animation |
|------|------------|-----------|
| Button hover | BG lightens | 150ms ease-out |
| Button press | Scale 0.98 | 100ms |
| Row hover | BG fade | 120ms |
| Modal open | Fade + scale 0.96 → 1 | 200ms |
| Progress fill | Smooth | ease-out |
| Annotation select | Border + handles | 120ms |
---
## 11. Tailwind Theme (Updated)
```js
colors: {
text: {
primary: '#121212',
secondary: '#2A2A2A',
muted: '#6B6B6B',
disabled: '#9A9A9A',
},
bg: {
app: '#FAFAF8',
card: '#FFFFFF',
hover: '#F1F0ED',
selected: '#ECEAE6',
},
border: '#E6E4E1',
accent: '#3A3A3A',
success: '#3E4A3A',
error: '#4A3A3A',
warning: '#4A4A3A',
}
```
---
## 12. Final Notes
- Pure black (#000000) should **never** be used as large surfaces
- Accent color usage should stay under **10% of UI area**
- Warm grays are intentional and must not be "corrected" to blue-grays
This theme is designed to scale from internal tool → polished SaaS without redesign.

View File

@@ -0,0 +1,273 @@
# Web Directory Refactoring - Complete ✅
**Date**: 2026-01-25
**Status**: ✅ Completed
**Tests**: 188 passing (0 failures)
**Coverage**: 23% (maintained)
---
## Final Directory Structure
```
src/web/
├── api/
│ ├── __init__.py
│ └── v1/
│ ├── __init__.py
│ ├── routes.py # Public inference API
│ ├── admin/
│ │ ├── __init__.py
│ │ ├── documents.py # Document management (was admin_routes.py)
│ │ ├── annotations.py # Annotation routes (was admin_annotation_routes.py)
│ │ └── training.py # Training routes (was admin_training_routes.py)
│ ├── async_api/
│ │ ├── __init__.py
│ │ └── routes.py # Async processing API (was async_routes.py)
│ └── batch/
│ ├── __init__.py
│ └── routes.py # Batch upload API (was batch_upload_routes.py)
├── schemas/
│ ├── __init__.py
│ ├── common.py # Shared models (ErrorResponse)
│ ├── admin.py # Admin schemas (was admin_schemas.py)
│ └── inference.py # Inference + async schemas (was schemas.py)
├── services/
│ ├── __init__.py
│ ├── inference.py # Inference service (was services.py)
│ ├── autolabel.py # Auto-label service (was admin_autolabel.py)
│ ├── async_processing.py # Async processing (was async_service.py)
│ └── batch_upload.py # Batch upload service (was batch_upload_service.py)
├── core/
│ ├── __init__.py
│ ├── auth.py # Authentication (was admin_auth.py)
│ ├── rate_limiter.py # Rate limiting (unchanged)
│ └── scheduler.py # Task scheduler (was admin_scheduler.py)
├── workers/
│ ├── __init__.py
│ ├── async_queue.py # Async task queue (was async_queue.py)
│ └── batch_queue.py # Batch task queue (was batch_queue.py)
├── __init__.py # Main exports
├── app.py # FastAPI app (imports updated)
├── config.py # Configuration (unchanged)
└── dependencies.py # Global dependencies (unchanged)
```
---
## Changes Summary
### Files Moved and Renamed
| Old Location | New Location | Change Type |
|-------------|--------------|-------------|
| `admin_routes.py` | `api/v1/admin/documents.py` | Moved + Renamed |
| `admin_annotation_routes.py` | `api/v1/admin/annotations.py` | Moved + Renamed |
| `admin_training_routes.py` | `api/v1/admin/training.py` | Moved + Renamed |
| `admin_auth.py` | `core/auth.py` | Moved |
| `admin_autolabel.py` | `services/autolabel.py` | Moved |
| `admin_scheduler.py` | `core/scheduler.py` | Moved |
| `admin_schemas.py` | `schemas/admin.py` | Moved |
| `routes.py` | `api/v1/routes.py` | Moved |
| `schemas.py` | `schemas/inference.py` | Moved |
| `services.py` | `services/inference.py` | Moved |
| `async_routes.py` | `api/v1/async_api/routes.py` | Moved |
| `async_queue.py` | `workers/async_queue.py` | Moved |
| `async_service.py` | `services/async_processing.py` | Moved + Renamed |
| `batch_queue.py` | `workers/batch_queue.py` | Moved |
| `batch_upload_routes.py` | `api/v1/batch/routes.py` | Moved |
| `batch_upload_service.py` | `services/batch_upload.py` | Moved |
**Total**: 16 files reorganized
### Files Updated
**Source Files** (imports updated):
- `app.py` - Updated all imports to new structure
- `api/v1/admin/documents.py` - Updated schema/auth imports
- `api/v1/admin/annotations.py` - Updated schema/service imports
- `api/v1/admin/training.py` - Updated schema/auth imports
- `api/v1/routes.py` - Updated schema imports
- `api/v1/async_api/routes.py` - Updated schema imports
- `api/v1/batch/routes.py` - Updated service/worker imports
- `services/async_processing.py` - Updated worker/core imports
**Test Files** (all 15 updated):
- `test_admin_annotations.py`
- `test_admin_auth.py`
- `test_admin_routes.py`
- `test_admin_routes_enhanced.py`
- `test_admin_training.py`
- `test_annotation_locks.py`
- `test_annotation_phase5.py`
- `test_async_queue.py`
- `test_async_routes.py`
- `test_async_service.py`
- `test_autolabel_with_locks.py`
- `test_batch_queue.py`
- `test_batch_upload_routes.py`
- `test_batch_upload_service.py`
- `test_training_phase4.py`
- `conftest.py`
---
## Import Examples
### Old Import Style (Before Refactoring)
```python
from src.web.admin_routes import create_admin_router
from src.web.admin_schemas import DocumentItem
from src.web.admin_auth import validate_admin_token
from src.web.async_routes import create_async_router
from src.web.schemas import ErrorResponse
```
### New Import Style (After Refactoring)
```python
# Admin API
from src.web.api.v1.admin.documents import create_admin_router
from src.web.api.v1.admin import create_admin_router # Shorter alternative
# Schemas
from src.web.schemas.admin import DocumentItem
from src.web.schemas.common import ErrorResponse
# Core components
from src.web.core.auth import validate_admin_token
# Async API
from src.web.api.v1.async_api.routes import create_async_router
```
---
## Benefits Achieved
### 1. **Clear Separation of Concerns**
- **API Routes**: All in `api/v1/` by version and feature
- **Data Models**: All in `schemas/` by domain
- **Business Logic**: All in `services/`
- **Core Components**: Reusable utilities in `core/`
- **Background Jobs**: Task queues in `workers/`
### 2. **Better Scalability**
- Easy to add API v2 without touching v1
- Clear namespace for each module
- Reduced file sizes (no 800+ line files)
- Follows single responsibility principle
### 3. **Improved Maintainability**
- Find files by function, not by prefix
- Each module has one clear purpose
- Easier to onboard new developers
- Better IDE navigation
### 4. **Standards Compliance**
- Follows FastAPI best practices
- Matches Django/Flask project structures
- Standard Python package organization
- Industry-standard naming conventions
---
## Testing Results
**Before Refactoring**:
- 188 tests passing
- 23% code coverage
- Flat directory structure
**After Refactoring**:
- ✅ 188 tests passing (0 failures)
- ✅ 23% code coverage (maintained)
- ✅ Clean hierarchical structure
- ✅ All imports updated
- ✅ No backward compatibility shims needed
---
## Migration Statistics
| Metric | Count |
|--------|-------|
| Files moved | 16 |
| Directories created | 9 |
| Files updated (source) | 8 |
| Files updated (tests) | 16 |
| Import statements updated | ~150 |
| Lines of code changed | ~200 |
| Tests broken | 0 |
| Coverage lost | 0% |
---
## Code Diff Summary
```diff
Before:
src/web/
├── admin_routes.py (645 lines)
├── admin_annotation_routes.py (504 lines)
├── admin_training_routes.py (565 lines)
├── admin_auth.py (22 lines)
├── admin_schemas.py (262 lines)
... (15 more files at root level)
After:
src/web/
├── api/v1/
│ ├── admin/ (3 route files)
│ ├── async_api/ (1 route file)
│ └── batch/ (1 route file)
├── schemas/ (3 schema files)
├── services/ (4 service files)
├── core/ (3 core files)
└── workers/ (2 worker files)
```
---
## Next Steps (Optional)
### Phase 2: Documentation
- [ ] Update API documentation with new import paths
- [ ] Create migration guide for external developers
- [ ] Update CLAUDE.md with new structure
### Phase 3: Further Optimization
- [ ] Split large files (>400 lines) if needed
- [ ] Extract common utilities
- [ ] Add typing stubs
### Phase 4: Deprecation (Future)
- [ ] Add deprecation warnings if creating compatibility layer
- [ ] Remove old imports after grace period
- [ ] Update all documentation
---
## Rollback Instructions
If needed, rollback is simple:
```bash
git revert <commit-hash>
```
All changes are in version control, making rollback safe and easy.
---
## Conclusion
**Refactoring completed successfully**
**Zero breaking changes**
**All tests passing**
**Industry-standard structure achieved**
The web directory is now organized following Python and FastAPI best practices, making it easier to scale, maintain, and extend.

View File

@@ -0,0 +1,186 @@
# Web Directory Refactoring Plan
## Current Structure Issues
1. **Flat structure**: All files in one directory (20 Python files)
2. **Naming inconsistency**: Mix of `admin_*`, `async_*`, `batch_*` prefixes
3. **Mixed concerns**: Routes, schemas, services, and workers in same directory
4. **Poor scalability**: Hard to navigate and maintain as project grows
## Proposed Structure (Best Practices)
```
src/web/
├── __init__.py # Main exports
├── app.py # FastAPI app factory
├── config.py # App configuration
├── dependencies.py # Global dependencies
├── api/ # API Routes Layer
│ ├── __init__.py
│ └── v1/ # API version 1
│ ├── __init__.py
│ ├── routes.py # Public API routes (inference)
│ ├── admin/ # Admin API routes
│ │ ├── __init__.py
│ │ ├── documents.py # admin_routes.py → documents.py
│ │ ├── annotations.py # admin_annotation_routes.py → annotations.py
│ │ ├── training.py # admin_training_routes.py → training.py
│ │ └── auth.py # admin_auth.py → auth.py (routes only)
│ ├── async_api/ # Async processing API
│ │ ├── __init__.py
│ │ └── routes.py # async_routes.py → routes.py
│ └── batch/ # Batch upload API
│ ├── __init__.py
│ └── routes.py # batch_upload_routes.py → routes.py
├── schemas/ # Pydantic Models
│ ├── __init__.py
│ ├── common.py # Shared schemas (ErrorResponse, etc.)
│ ├── inference.py # schemas.py → inference.py
│ ├── admin.py # admin_schemas.py → admin.py
│ ├── async_api.py # New: async API schemas
│ └── batch.py # New: batch upload schemas
├── services/ # Business Logic Layer
│ ├── __init__.py
│ ├── inference.py # services.py → inference.py
│ ├── autolabel.py # admin_autolabel.py → autolabel.py
│ ├── async_processing.py # async_service.py → async_processing.py
│ └── batch_upload.py # batch_upload_service.py → batch_upload.py
├── core/ # Core Components
│ ├── __init__.py
│ ├── auth.py # admin_auth.py → auth.py (logic only)
│ ├── rate_limiter.py # rate_limiter.py → rate_limiter.py
│ └── scheduler.py # admin_scheduler.py → scheduler.py
└── workers/ # Background Task Queues
├── __init__.py
├── async_queue.py # async_queue.py → async_queue.py
└── batch_queue.py # batch_queue.py → batch_queue.py
```
## File Mapping
### Current → New Location
| Current File | New Location | Purpose |
|--------------|--------------|---------|
| `admin_routes.py` | `api/v1/admin/documents.py` | Document management routes |
| `admin_annotation_routes.py` | `api/v1/admin/annotations.py` | Annotation routes |
| `admin_training_routes.py` | `api/v1/admin/training.py` | Training routes |
| `admin_auth.py` | Split: `api/v1/admin/auth.py` + `core/auth.py` | Auth routes + logic |
| `admin_schemas.py` | `schemas/admin.py` | Admin Pydantic models |
| `admin_autolabel.py` | `services/autolabel.py` | Auto-label service |
| `admin_scheduler.py` | `core/scheduler.py` | Training scheduler |
| `routes.py` | `api/v1/routes.py` | Public inference API |
| `schemas.py` | `schemas/inference.py` | Inference models |
| `services.py` | `services/inference.py` | Inference service |
| `async_routes.py` | `api/v1/async_api/routes.py` | Async API routes |
| `async_service.py` | `services/async_processing.py` | Async processing service |
| `async_queue.py` | `workers/async_queue.py` | Async task queue |
| `batch_upload_routes.py` | `api/v1/batch/routes.py` | Batch upload routes |
| `batch_upload_service.py` | `services/batch_upload.py` | Batch upload service |
| `batch_queue.py` | `workers/batch_queue.py` | Batch task queue |
| `rate_limiter.py` | `core/rate_limiter.py` | Rate limiting logic |
| `config.py` | `config.py` | Keep as-is |
| `dependencies.py` | `dependencies.py` | Keep as-is |
| `app.py` | `app.py` | Keep as-is (update imports) |
## Benefits
### 1. Clear Separation of Concerns
- **Routes**: API endpoint definitions
- **Schemas**: Data validation models
- **Services**: Business logic
- **Core**: Reusable components
- **Workers**: Background processing
### 2. Better Scalability
- Easy to add new API versions (`v2/`)
- Clear namespace for each domain
- Reduced file size (no 800+ line files)
### 3. Improved Maintainability
- Find files by function, not by prefix
- Each module has single responsibility
- Easier to write focused tests
### 4. Standard Python Patterns
- Package-based organization
- Follows FastAPI best practices
- Similar to Django/Flask structures
## Implementation Steps
### Phase 1: Create New Structure (No Breaking Changes)
1. Create new directories: `api/`, `schemas/`, `services/`, `core/`, `workers/`
2. Copy files to new locations (don't delete originals yet)
3. Update imports in new files
4. Add `__init__.py` with proper exports
### Phase 2: Update Tests
5. Update test imports to use new structure
6. Run tests to verify nothing breaks
7. Fix any import issues
### Phase 3: Update Main App
8. Update `app.py` to import from new locations
9. Run full test suite
10. Verify all endpoints work
### Phase 4: Cleanup
11. Delete old files
12. Update documentation
13. Final test run
## Migration Priority
**High Priority** (Most used):
- Routes and schemas (user-facing APIs)
- Services (core business logic)
**Medium Priority**:
- Core components (auth, rate limiter)
- Workers (background tasks)
**Low Priority**:
- Config and dependencies (already well-located)
## Backwards Compatibility
During migration, maintain backwards compatibility:
```python
# src/web/__init__.py
# Old imports still work
from src.web.api.v1.admin.documents import router as admin_router
from src.web.schemas.admin import AdminDocument
# Keep old names for compatibility (temporary)
admin_routes = admin_router # Deprecated alias
```
## Testing Strategy
1. **Unit Tests**: Test each module independently
2. **Integration Tests**: Test API endpoints still work
3. **Import Tests**: Verify all old imports still work
4. **Coverage**: Maintain current 23% coverage minimum
## Rollback Plan
If issues arise:
1. Keep old files until fully migrated
2. Git allows easy revert
3. Tests catch breaking changes early
---
## Next Steps
Would you like me to:
1. **Start Phase 1**: Create new directory structure and move files?
2. **Create migration script**: Automate the file moves and import updates?
3. **Focus on specific area**: Start with admin API or async API first?

View File

@@ -0,0 +1,218 @@
# Web Directory Refactoring - Current Status
## ✅ Completed Steps
### 1. Directory Structure Created
```
src/web/
├── api/
│ ├── v1/
│ │ ├── admin/ (documents.py, annotations.py, training.py)
│ │ ├── async_api/ (routes.py)
│ │ ├── batch/ (routes.py)
│ │ └── routes.py (public inference API)
├── schemas/
│ ├── admin.py (admin schemas)
│ ├── inference.py (inference + async schemas)
│ └── common.py (ErrorResponse)
├── services/
│ ├── autolabel.py
│ ├── async_processing.py
│ ├── batch_upload.py
│ └── inference.py
├── core/
│ ├── auth.py
│ ├── rate_limiter.py
│ └── scheduler.py
└── workers/
├── async_queue.py
└── batch_queue.py
```
### 2. Files Copied and Imports Updated
#### Admin API (✅ Complete)
- [x] `admin_routes.py``api/v1/admin/documents.py` (imports updated)
- [x] `admin_annotation_routes.py``api/v1/admin/annotations.py` (imports updated)
- [x] `admin_training_routes.py``api/v1/admin/training.py` (imports updated)
- [x] `api/v1/admin/__init__.py` created with exports
#### Public & Async API (✅ Complete)
- [x] `routes.py``api/v1/routes.py` (imports updated)
- [x] `async_routes.py``api/v1/async_api/routes.py` (imports updated)
- [x] `batch_upload_routes.py``api/v1/batch/routes.py` (copied, imports pending)
#### Schemas (✅ Complete)
- [x] `admin_schemas.py``schemas/admin.py`
- [x] `schemas.py``schemas/inference.py`
- [x] `schemas/common.py` created
- [x] `schemas/__init__.py` created with exports
#### Services (✅ Complete)
- [x] `admin_autolabel.py``services/autolabel.py`
- [x] `async_service.py``services/async_processing.py`
- [x] `batch_upload_service.py``services/batch_upload.py`
- [x] `services.py``services/inference.py`
- [x] `services/__init__.py` created
#### Core Components (✅ Complete)
- [x] `admin_auth.py``core/auth.py`
- [x] `rate_limiter.py``core/rate_limiter.py`
- [x] `admin_scheduler.py``core/scheduler.py`
- [x] `core/__init__.py` created
#### Workers (✅ Complete)
- [x] `async_queue.py``workers/async_queue.py`
- [x] `batch_queue.py``workers/batch_queue.py`
- [x] `workers/__init__.py` created
#### Main App (✅ Complete)
- [x] `app.py` imports updated to use new structure
---
## ⏳ Remaining Work
### 1. Update Remaining File Imports (HIGH PRIORITY)
Files that need import updates:
- [ ] `api/v1/batch/routes.py` - update to use new schema/service imports
- [ ] `services/autolabel.py` - may need import updates if it references old paths
- [ ] `services/async_processing.py` - check for old import references
- [ ] `services/batch_upload.py` - check for old import references
- [ ] `services/inference.py` - check for old import references
### 2. Update ALL Test Files (CRITICAL)
Test files need to import from new locations. Pattern:
**Old:**
```python
from src.web.admin_routes import create_admin_router
from src.web.admin_schemas import DocumentItem
from src.web.admin_auth import validate_admin_token
```
**New:**
```python
from src.web.api.v1.admin import create_admin_router
from src.web.schemas.admin import DocumentItem
from src.web.core.auth import validate_admin_token
```
Test files to update:
- [ ] `tests/web/test_admin_annotations.py`
- [ ] `tests/web/test_admin_auth.py`
- [ ] `tests/web/test_admin_routes.py`
- [ ] `tests/web/test_admin_routes_enhanced.py`
- [ ] `tests/web/test_admin_training.py`
- [ ] `tests/web/test_annotation_locks.py`
- [ ] `tests/web/test_annotation_phase5.py`
- [ ] `tests/web/test_async_queue.py`
- [ ] `tests/web/test_async_routes.py`
- [ ] `tests/web/test_async_service.py`
- [ ] `tests/web/test_autolabel_with_locks.py`
- [ ] `tests/web/test_batch_queue.py`
- [ ] `tests/web/test_batch_upload_routes.py`
- [ ] `tests/web/test_batch_upload_service.py`
- [ ] `tests/web/test_rate_limiter.py`
- [ ] `tests/web/test_training_phase4.py`
### 3. Create Backward Compatibility Layer (OPTIONAL)
Keep old imports working temporarily:
```python
# src/web/admin_routes.py (temporary compatibility shim)
\"\"\"
DEPRECATED: Use src.web.api.v1.admin.documents instead.
This file will be removed in next version.
\"\"\"
import warnings
from src.web.api.v1.admin.documents import *
warnings.warn(
"Importing from src.web.admin_routes is deprecated. "
"Use src.web.api.v1.admin.documents instead.",
DeprecationWarning,
stacklevel=2
)
```
### 4. Verify and Test
1. Run tests:
```bash
pytest tests/web/ -v
```
2. Check for any import errors:
```bash
python -c "from src.web.app import create_app; create_app()"
```
3. Start server and test endpoints:
```bash
python run_server.py
```
### 5. Clean Up Old Files (ONLY AFTER TESTS PASS)
Old files to remove:
- `src/web/admin_*.py` (7 files)
- `src/web/async_*.py` (3 files)
- `src/web/batch_*.py` (3 files)
- `src/web/routes.py`
- `src/web/services.py`
- `src/web/schemas.py`
- `src/web/rate_limiter.py`
Keep these files (don't remove):
- `src/web/__init__.py`
- `src/web/app.py`
- `src/web/config.py`
- `src/web/dependencies.py`
---
## 🎯 Next Immediate Steps
1. **Update batch/routes.py imports** - Quick fix for remaining API route
2. **Update test file imports** - Critical for verification
3. **Run test suite** - Verify nothing broke
4. **Fix any import errors** - Address failures
5. **Remove old files** - Clean up after tests pass
---
## 📊 Migration Impact Summary
| Category | Files Moved | Imports Updated | Status |
|----------|-------------|-----------------|--------|
| API Routes | 7 | 5/7 | 🟡 In Progress |
| Schemas | 3 | 3/3 | ✅ Complete |
| Services | 4 | 0/4 | ⚠️ Pending |
| Core | 3 | 3/3 | ✅ Complete |
| Workers | 2 | 2/2 | ✅ Complete |
| Tests | 0 | 0/16 | ❌ Not Started |
**Overall Progress: 65%**
---
## 🚀 Benefits After Migration
1. **Better Organization**: Clear separation by function
2. **Easier Navigation**: Find files by purpose, not prefix
3. **Scalability**: Easy to add new API versions
4. **Standard Structure**: Follows FastAPI best practices
5. **Maintainability**: Each module has single responsibility
---
## 📝 Notes
- All original files are still in place (no data loss risk)
- New structure is operational but needs import updates
- Backward compatibility can be added if needed
- Tests will validate the migration success

5
frontend/.env.example Normal file
View File

@@ -0,0 +1,5 @@
# Backend API URL
VITE_API_URL=http://localhost:8000
# WebSocket URL (for future real-time updates)
VITE_WS_URL=ws://localhost:8000/ws

24
frontend/.gitignore vendored Normal file
View File

@@ -0,0 +1,24 @@
# Logs
logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
pnpm-debug.log*
lerna-debug.log*
node_modules
dist
dist-ssr
*.local
# Editor directories and files
.vscode/*
!.vscode/extensions.json
.idea
.DS_Store
*.suo
*.ntvs*
*.njsproj
*.sln
*.sw?

20
frontend/README.md Normal file
View File

@@ -0,0 +1,20 @@
<div align="center">
<img width="1200" height="475" alt="GHBanner" src="https://github.com/user-attachments/assets/0aa67016-6eaf-458a-adb2-6e31a0763ed6" />
</div>
# Run and deploy your AI Studio app
This contains everything you need to run your app locally.
View your app in AI Studio: https://ai.studio/apps/drive/13hqd80ft4g_LngMYB8LLJxx2XU8C_eI4
## Run Locally
**Prerequisites:** Node.js
1. Install dependencies:
`npm install`
2. Set the `GEMINI_API_KEY` in [.env.local](.env.local) to your Gemini API key
3. Run the app:
`npm run dev`

View File

@@ -0,0 +1,240 @@
# Frontend Refactoring Plan
## Current Structure Issues
1. **Flat component organization** - All components in one directory
2. **Mock data only** - No real API integration
3. **No state management** - Props drilling everywhere
4. **CDN dependencies** - Should use npm packages
5. **Manual routing** - Using useState instead of react-router
6. **No TypeScript integration with backend** - Types don't match API schemas
## Recommended Structure
```
frontend/
├── public/
│ └── favicon.ico
├── src/
│ ├── api/ # API Layer
│ │ ├── client.ts # Axios instance + interceptors
│ │ ├── types.ts # API request/response types
│ │ └── endpoints/
│ │ ├── documents.ts # GET /api/v1/admin/documents
│ │ ├── annotations.ts # GET/POST /api/v1/admin/documents/{id}/annotations
│ │ ├── training.ts # GET/POST /api/v1/admin/training/*
│ │ ├── inference.ts # POST /api/v1/infer
│ │ └── async.ts # POST /api/v1/async/submit
│ │
│ ├── components/
│ │ ├── common/ # Reusable components
│ │ │ ├── Badge.tsx
│ │ │ ├── Button.tsx
│ │ │ ├── Input.tsx
│ │ │ ├── Modal.tsx
│ │ │ ├── Table.tsx
│ │ │ ├── ProgressBar.tsx
│ │ │ └── StatusBadge.tsx
│ │ │
│ │ ├── layout/ # Layout components
│ │ │ ├── TopNav.tsx
│ │ │ ├── Sidebar.tsx
│ │ │ └── PageHeader.tsx
│ │ │
│ │ ├── documents/ # Document-specific components
│ │ │ ├── DocumentTable.tsx
│ │ │ ├── DocumentFilters.tsx
│ │ │ ├── DocumentRow.tsx
│ │ │ ├── UploadModal.tsx
│ │ │ └── BatchUploadModal.tsx
│ │ │
│ │ ├── annotations/ # Annotation components
│ │ │ ├── AnnotationCanvas.tsx
│ │ │ ├── AnnotationBox.tsx
│ │ │ ├── AnnotationTable.tsx
│ │ │ ├── FieldEditor.tsx
│ │ │ └── VerificationPanel.tsx
│ │ │
│ │ └── training/ # Training components
│ │ ├── DocumentSelector.tsx
│ │ ├── TrainingConfig.tsx
│ │ ├── TrainingJobList.tsx
│ │ ├── ModelCard.tsx
│ │ └── MetricsChart.tsx
│ │
│ ├── pages/ # Page-level components
│ │ ├── DocumentsPage.tsx # Was Dashboard.tsx
│ │ ├── DocumentDetailPage.tsx # Was DocumentDetail.tsx
│ │ ├── TrainingPage.tsx # Was Training.tsx
│ │ ├── ModelsPage.tsx # Was Models.tsx
│ │ └── InferencePage.tsx # New: Test inference
│ │
│ ├── hooks/ # Custom React Hooks
│ │ ├── useDocuments.ts # Document CRUD + listing
│ │ ├── useAnnotations.ts # Annotation management
│ │ ├── useTraining.ts # Training jobs
│ │ ├── usePolling.ts # Auto-refresh for async jobs
│ │ └── useDebounce.ts # Debounce search inputs
│ │
│ ├── store/ # State Management (Zustand)
│ │ ├── documentsStore.ts
│ │ ├── annotationsStore.ts
│ │ ├── trainingStore.ts
│ │ └── uiStore.ts
│ │
│ ├── types/ # TypeScript Types
│ │ ├── index.ts
│ │ ├── document.ts
│ │ ├── annotation.ts
│ │ ├── training.ts
│ │ └── api.ts
│ │
│ ├── utils/ # Utility Functions
│ │ ├── formatters.ts # Date, currency, etc.
│ │ ├── validators.ts # Form validation
│ │ └── constants.ts # Field definitions, statuses
│ │
│ ├── styles/
│ │ └── index.css # Tailwind entry
│ │
│ ├── App.tsx
│ ├── main.tsx
│ └── router.tsx # React Router config
├── .env.example
├── package.json
├── tsconfig.json
├── vite.config.ts
├── tailwind.config.js
├── postcss.config.js
└── index.html
```
## Migration Steps
### Phase 1: Setup Infrastructure
- [ ] Install dependencies (axios, react-router, zustand, @tanstack/react-query)
- [ ] Setup local Tailwind (remove CDN)
- [ ] Create API client with interceptors
- [ ] Add environment variables (.env.local with VITE_API_URL)
### Phase 2: Create API Layer
- [ ] Create `src/api/client.ts` with axios instance
- [ ] Create `src/api/endpoints/documents.ts` matching backend API
- [ ] Create `src/api/endpoints/annotations.ts`
- [ ] Create `src/api/endpoints/training.ts`
- [ ] Add types matching backend schemas
### Phase 3: Reorganize Components
- [ ] Move existing components to new structure
- [ ] Split large components (Dashboard > DocumentTable + DocumentFilters + DocumentRow)
- [ ] Extract reusable components (Badge, Button already done)
- [ ] Create layout components (TopNav, Sidebar)
### Phase 4: Add Routing
- [ ] Install react-router-dom
- [ ] Create router.tsx with routes
- [ ] Update App.tsx to use RouterProvider
- [ ] Add navigation links
### Phase 5: State Management
- [ ] Create custom hooks (useDocuments, useAnnotations)
- [ ] Use @tanstack/react-query for server state
- [ ] Add Zustand stores for UI state
- [ ] Replace mock data with API calls
### Phase 6: Backend Integration
- [ ] Update CORS settings in backend
- [ ] Test all API endpoints
- [ ] Add error handling
- [ ] Add loading states
## Dependencies to Add
```json
{
"dependencies": {
"react-router-dom": "^6.22.0",
"axios": "^1.6.7",
"zustand": "^4.5.0",
"@tanstack/react-query": "^5.20.0",
"date-fns": "^3.3.0",
"clsx": "^2.1.0"
},
"devDependencies": {
"tailwindcss": "^3.4.1",
"autoprefixer": "^10.4.17",
"postcss": "^8.4.35"
}
}
```
## Configuration Files to Create
### tailwind.config.js
```javascript
export default {
content: ['./index.html', './src/**/*.{js,ts,jsx,tsx}'],
theme: {
extend: {
colors: {
warm: {
bg: '#FAFAF8',
card: '#FFFFFF',
hover: '#F1F0ED',
selected: '#ECEAE6',
border: '#E6E4E1',
divider: '#D8D6D2',
text: {
primary: '#121212',
secondary: '#2A2A2A',
muted: '#6B6B6B',
disabled: '#9A9A9A',
},
state: {
success: '#3E4A3A',
error: '#4A3A3A',
warning: '#4A4A3A',
info: '#3A3A3A',
}
}
}
}
}
}
```
### .env.example
```bash
VITE_API_URL=http://localhost:8000
VITE_WS_URL=ws://localhost:8000/ws
```
## Type Generation from Backend
Consider generating TypeScript types from Python Pydantic schemas:
- Option 1: Use `datamodel-code-generator` to convert schemas
- Option 2: Manually maintain types in `src/types/api.ts`
- Option 3: Use OpenAPI spec + openapi-typescript-codegen
## Testing Strategy
- Unit tests: Vitest for components
- Integration tests: React Testing Library
- E2E tests: Playwright (matching backend)
## Performance Considerations
- Code splitting by route
- Lazy load heavy components (AnnotationCanvas)
- Optimize re-renders with React.memo
- Use virtual scrolling for large tables
- Image lazy loading for document previews
## Accessibility
- Proper ARIA labels
- Keyboard navigation
- Focus management
- Color contrast compliance (already done with Warm Graphite theme)

256
frontend/SETUP.md Normal file
View File

@@ -0,0 +1,256 @@
# Frontend Setup Guide
## Quick Start
### 1. Install Dependencies
```bash
cd frontend
npm install
```
### 2. Configure Environment
Copy `.env.example` to `.env.local` and update if needed:
```bash
cp .env.example .env.local
```
Default configuration:
```
VITE_API_URL=http://localhost:8000
VITE_WS_URL=ws://localhost:8000/ws
```
### 3. Start Backend API
Make sure the backend is running first:
```bash
# From project root
wsl bash -c "source ~/miniconda3/etc/profile.d/conda.sh && conda activate invoice-py311 && python run_server.py"
```
Backend will be available at: http://localhost:8000
### 4. Start Frontend Dev Server
```bash
cd frontend
npm run dev
```
Frontend will be available at: http://localhost:3000
## Project Structure
```
frontend/
├── src/
│ ├── api/ # API client layer
│ │ ├── client.ts # Axios instance with interceptors
│ │ ├── types.ts # API type definitions
│ │ └── endpoints/
│ │ ├── documents.ts # Document API calls
│ │ ├── annotations.ts # Annotation API calls
│ │ └── training.ts # Training API calls
│ │
│ ├── components/ # React components
│ │ └── Dashboard.tsx # Updated with real API integration
│ │
│ ├── hooks/ # Custom React Hooks
│ │ ├── useDocuments.ts
│ │ ├── useDocumentDetail.ts
│ │ ├── useAnnotations.ts
│ │ └── useTraining.ts
│ │
│ ├── styles/
│ │ └── index.css # Tailwind CSS entry
│ │
│ ├── App.tsx
│ └── main.tsx # App entry point with QueryClient
├── components/ # Legacy components (to be migrated)
│ ├── Badge.tsx
│ ├── Button.tsx
│ ├── Layout.tsx
│ ├── DocumentDetail.tsx
│ ├── Training.tsx
│ ├── Models.tsx
│ └── UploadModal.tsx
├── tailwind.config.js # Tailwind configuration
├── postcss.config.js
├── vite.config.ts
├── package.json
└── index.html
```
## Key Technologies
- **React 19** - UI framework
- **TypeScript** - Type safety
- **Vite** - Build tool
- **Tailwind CSS** - Styling (Warm Graphite theme)
- **Axios** - HTTP client
- **@tanstack/react-query** - Server state management
- **lucide-react** - Icon library
## API Integration
### Authentication
The app stores admin token in localStorage:
```typescript
localStorage.setItem('admin_token', 'your-token')
```
All API requests automatically include the `X-Admin-Token` header.
### Available Hooks
#### useDocuments
```typescript
const {
documents,
total,
isLoading,
uploadDocument,
deleteDocument,
triggerAutoLabel,
} = useDocuments({ status: 'labeled', limit: 20 })
```
#### useDocumentDetail
```typescript
const { document, annotations, isLoading } = useDocumentDetail(documentId)
```
#### useAnnotations
```typescript
const {
createAnnotation,
updateAnnotation,
deleteAnnotation,
verifyAnnotation,
overrideAnnotation,
} = useAnnotations(documentId)
```
#### useTraining
```typescript
const {
models,
isLoadingModels,
startTraining,
downloadModel,
} = useTraining()
```
## Features Implemented
### Phase 1 (Completed)
- ✅ API client with axios interceptors
- ✅ Type-safe API endpoints
- ✅ React Query for server state
- ✅ Custom hooks for all APIs
- ✅ Dashboard with real data
- ✅ Local Tailwind CSS
- ✅ Environment configuration
- ✅ CORS configured in backend
### Phase 2 (TODO)
- [ ] Update DocumentDetail to use useDocumentDetail
- [ ] Update Training page to use useTraining hooks
- [ ] Update Models page with real data
- [ ] Add UploadModal integration with API
- [ ] Add react-router for proper routing
- [ ] Add error boundary
- [ ] Add loading states
- [ ] Add toast notifications
### Phase 3 (TODO)
- [ ] Annotation canvas with real data
- [ ] Batch upload functionality
- [ ] Auto-label progress polling
- [ ] Training job monitoring
- [ ] Model download functionality
- [ ] Search and filtering
- [ ] Pagination
## Development Tips
### Hot Module Replacement
Vite supports HMR. Changes will reflect immediately without page reload.
### API Debugging
Check browser console for API requests:
- Network tab shows all requests/responses
- Axios interceptors log errors automatically
### Type Safety
TypeScript types in `src/api/types.ts` match backend Pydantic schemas.
To regenerate types from backend:
```bash
# TODO: Add type generation script
```
### Backend API Documentation
Visit http://localhost:8000/docs for interactive API documentation (Swagger UI).
## Troubleshooting
### CORS Errors
If you see CORS errors:
1. Check backend is running at http://localhost:8000
2. Verify CORS settings in `src/web/app.py`
3. Check `.env.local` has correct `VITE_API_URL`
### Module Not Found
If imports fail:
```bash
rm -rf node_modules package-lock.json
npm install
```
### Types Not Matching
If API responses don't match types:
1. Check backend version is up-to-date
2. Verify types in `src/api/types.ts`
3. Check API response in Network tab
## Next Steps
1. Run `npm install` to install dependencies
2. Start backend server
3. Run `npm run dev` to start frontend
4. Open http://localhost:3000
5. Create an admin token via backend API
6. Store token in localStorage via browser console:
```javascript
localStorage.setItem('admin_token', 'your-token-here')
```
7. Refresh page to see authenticated API calls
## Production Build
```bash
npm run build
npm run preview # Preview production build
```
Build output will be in `dist/` directory.

15
frontend/index.html Normal file
View File

@@ -0,0 +1,15 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Graphite Annotator - Invoice Field Extraction</title>
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&family=JetBrains+Mono:wght@400;500&display=swap" rel="stylesheet">
</head>
<body>
<div id="root"></div>
<script type="module" src="/src/main.tsx"></script>
</body>
</html>

5
frontend/metadata.json Normal file
View File

@@ -0,0 +1,5 @@
{
"name": "Graphite Annotator",
"description": "A professional, warm graphite themed document annotation and training tool for enterprise use cases.",
"requestFramePermissions": []
}

4899
frontend/package-lock.json generated Normal file

File diff suppressed because it is too large Load Diff

41
frontend/package.json Normal file
View File

@@ -0,0 +1,41 @@
{
"name": "graphite-annotator",
"private": true,
"version": "0.0.0",
"type": "module",
"scripts": {
"dev": "vite",
"build": "vite build",
"preview": "vite preview",
"test": "vitest run",
"test:watch": "vitest",
"test:coverage": "vitest run --coverage"
},
"dependencies": {
"@tanstack/react-query": "^5.20.0",
"axios": "^1.6.7",
"clsx": "^2.1.0",
"date-fns": "^3.3.0",
"lucide-react": "^0.563.0",
"react": "^19.2.3",
"react-dom": "^19.2.3",
"react-router-dom": "^6.22.0",
"recharts": "^3.7.0",
"zustand": "^4.5.0"
},
"devDependencies": {
"@testing-library/jest-dom": "^6.9.1",
"@testing-library/react": "^16.3.2",
"@testing-library/user-event": "^14.6.1",
"@types/node": "^22.14.0",
"@vitejs/plugin-react": "^5.0.0",
"@vitest/coverage-v8": "^4.0.18",
"autoprefixer": "^10.4.17",
"jsdom": "^27.4.0",
"postcss": "^8.4.35",
"tailwindcss": "^3.4.1",
"typescript": "~5.8.2",
"vite": "^6.2.0",
"vitest": "^4.0.18"
}
}

View File

@@ -0,0 +1,6 @@
export default {
plugins: {
tailwindcss: {},
autoprefixer: {},
},
}

81
frontend/src/App.tsx Normal file
View File

@@ -0,0 +1,81 @@
import React, { useState, useEffect } from 'react'
import { Layout } from './components/Layout'
import { DashboardOverview } from './components/DashboardOverview'
import { Dashboard } from './components/Dashboard'
import { DocumentDetail } from './components/DocumentDetail'
import { Training } from './components/Training'
import { DatasetDetail } from './components/DatasetDetail'
import { Models } from './components/Models'
import { Login } from './components/Login'
import { InferenceDemo } from './components/InferenceDemo'
const App: React.FC = () => {
const [currentView, setCurrentView] = useState('dashboard')
const [selectedDocId, setSelectedDocId] = useState<string | null>(null)
const [isAuthenticated, setIsAuthenticated] = useState(false)
useEffect(() => {
const token = localStorage.getItem('admin_token')
setIsAuthenticated(!!token)
}, [])
const handleNavigate = (view: string, docId?: string) => {
setCurrentView(view)
if (docId) {
setSelectedDocId(docId)
}
}
const handleLogin = (token: string) => {
setIsAuthenticated(true)
}
const handleLogout = () => {
localStorage.removeItem('admin_token')
setIsAuthenticated(false)
setCurrentView('documents')
}
if (!isAuthenticated) {
return <Login onLogin={handleLogin} />
}
const renderContent = () => {
switch (currentView) {
case 'dashboard':
return <DashboardOverview onNavigate={handleNavigate} />
case 'documents':
return <Dashboard onNavigate={handleNavigate} />
case 'detail':
return (
<DocumentDetail
docId={selectedDocId || '1'}
onBack={() => setCurrentView('documents')}
/>
)
case 'demo':
return <InferenceDemo />
case 'training':
return <Training onNavigate={handleNavigate} />
case 'dataset-detail':
return (
<DatasetDetail
datasetId={selectedDocId || ''}
onBack={() => setCurrentView('training')}
/>
)
case 'models':
return <Models />
default:
return <DashboardOverview onNavigate={handleNavigate} />
}
}
return (
<Layout activeView={currentView} onNavigate={handleNavigate} onLogout={handleLogout}>
{renderContent()}
</Layout>
)
}
export default App

View File

@@ -0,0 +1,41 @@
import axios, { AxiosInstance, AxiosError } from 'axios'
const apiClient: AxiosInstance = axios.create({
baseURL: import.meta.env.VITE_API_URL || 'http://localhost:8000',
headers: {
'Content-Type': 'application/json',
},
timeout: 30000,
})
apiClient.interceptors.request.use(
(config) => {
const token = localStorage.getItem('admin_token')
if (token) {
config.headers['X-Admin-Token'] = token
}
return config
},
(error) => {
return Promise.reject(error)
}
)
apiClient.interceptors.response.use(
(response) => response,
(error: AxiosError) => {
if (error.response?.status === 401) {
console.warn('Authentication required. Please set admin_token in localStorage.')
// Don't redirect to avoid infinite loop
// User should manually set: localStorage.setItem('admin_token', 'your-token')
}
if (error.response?.status === 429) {
console.error('Rate limit exceeded')
}
return Promise.reject(error)
}
)
export default apiClient

View File

@@ -0,0 +1,66 @@
import apiClient from '../client'
import type {
AnnotationItem,
CreateAnnotationRequest,
AnnotationOverrideRequest,
} from '../types'
export const annotationsApi = {
list: async (documentId: string): Promise<AnnotationItem[]> => {
const { data } = await apiClient.get(
`/api/v1/admin/documents/${documentId}/annotations`
)
return data.annotations
},
create: async (
documentId: string,
annotation: CreateAnnotationRequest
): Promise<AnnotationItem> => {
const { data } = await apiClient.post(
`/api/v1/admin/documents/${documentId}/annotations`,
annotation
)
return data
},
update: async (
documentId: string,
annotationId: string,
updates: Partial<CreateAnnotationRequest>
): Promise<AnnotationItem> => {
const { data } = await apiClient.patch(
`/api/v1/admin/documents/${documentId}/annotations/${annotationId}`,
updates
)
return data
},
delete: async (documentId: string, annotationId: string): Promise<void> => {
await apiClient.delete(
`/api/v1/admin/documents/${documentId}/annotations/${annotationId}`
)
},
verify: async (
documentId: string,
annotationId: string
): Promise<{ annotation_id: string; is_verified: boolean; message: string }> => {
const { data } = await apiClient.post(
`/api/v1/admin/documents/${documentId}/annotations/${annotationId}/verify`
)
return data
},
override: async (
documentId: string,
annotationId: string,
overrideData: AnnotationOverrideRequest
): Promise<{ annotation_id: string; source: string; message: string }> => {
const { data } = await apiClient.patch(
`/api/v1/admin/documents/${documentId}/annotations/${annotationId}/override`,
overrideData
)
return data
},
}

View File

@@ -0,0 +1,118 @@
/**
* Tests for augmentation API endpoints.
*
* TDD Phase 1: RED - Write tests first, then implement to pass.
*/
import { describe, it, expect, vi, beforeEach } from 'vitest'
import { augmentationApi } from './augmentation'
import apiClient from '../client'
// Mock the API client
vi.mock('../client', () => ({
default: {
get: vi.fn(),
post: vi.fn(),
},
}))
describe('augmentationApi', () => {
beforeEach(() => {
vi.clearAllMocks()
})
describe('getTypes', () => {
it('should fetch augmentation types', async () => {
const mockResponse = {
data: {
augmentation_types: [
{
name: 'gaussian_noise',
description: 'Adds Gaussian noise',
affects_geometry: false,
stage: 'noise',
default_params: { mean: 0, std: 15 },
},
],
},
}
vi.mocked(apiClient.get).mockResolvedValueOnce(mockResponse)
const result = await augmentationApi.getTypes()
expect(apiClient.get).toHaveBeenCalledWith('/api/v1/admin/augmentation/types')
expect(result.augmentation_types).toHaveLength(1)
expect(result.augmentation_types[0].name).toBe('gaussian_noise')
})
})
describe('getPresets', () => {
it('should fetch augmentation presets', async () => {
const mockResponse = {
data: {
presets: [
{ name: 'conservative', description: 'Safe augmentations' },
{ name: 'moderate', description: 'Balanced augmentations' },
],
},
}
vi.mocked(apiClient.get).mockResolvedValueOnce(mockResponse)
const result = await augmentationApi.getPresets()
expect(apiClient.get).toHaveBeenCalledWith('/api/v1/admin/augmentation/presets')
expect(result.presets).toHaveLength(2)
})
})
describe('preview', () => {
it('should preview single augmentation', async () => {
const mockResponse = {
data: {
preview_url: '',
original_url: '',
applied_params: { std: 15 },
},
}
vi.mocked(apiClient.post).mockResolvedValueOnce(mockResponse)
const result = await augmentationApi.preview('doc-123', {
augmentation_type: 'gaussian_noise',
params: { std: 15 },
})
expect(apiClient.post).toHaveBeenCalledWith(
'/api/v1/admin/augmentation/preview/doc-123',
{
augmentation_type: 'gaussian_noise',
params: { std: 15 },
},
{ params: { page: 1 } }
)
expect(result.preview_url).toBe('')
})
it('should support custom page number', async () => {
const mockResponse = {
data: {
preview_url: '',
original_url: '',
applied_params: {},
},
}
vi.mocked(apiClient.post).mockResolvedValueOnce(mockResponse)
await augmentationApi.preview(
'doc-123',
{ augmentation_type: 'gaussian_noise', params: {} },
2
)
expect(apiClient.post).toHaveBeenCalledWith(
'/api/v1/admin/augmentation/preview/doc-123',
expect.anything(),
{ params: { page: 2 } }
)
})
})
})

View File

@@ -0,0 +1,144 @@
/**
* Augmentation API endpoints.
*
* Provides functions for fetching augmentation types, presets, and previewing augmentations.
*/
import apiClient from '../client'
// Types
export interface AugmentationTypeInfo {
name: string
description: string
affects_geometry: boolean
stage: string
default_params: Record<string, unknown>
}
export interface AugmentationTypesResponse {
augmentation_types: AugmentationTypeInfo[]
}
export interface PresetInfo {
name: string
description: string
config?: Record<string, unknown>
}
export interface PresetsResponse {
presets: PresetInfo[]
}
export interface PreviewRequest {
augmentation_type: string
params: Record<string, unknown>
}
export interface PreviewResponse {
preview_url: string
original_url: string
applied_params: Record<string, unknown>
}
export interface AugmentationParams {
enabled: boolean
probability: number
params: Record<string, unknown>
}
export interface AugmentationConfig {
perspective_warp?: AugmentationParams
wrinkle?: AugmentationParams
edge_damage?: AugmentationParams
stain?: AugmentationParams
lighting_variation?: AugmentationParams
shadow?: AugmentationParams
gaussian_blur?: AugmentationParams
motion_blur?: AugmentationParams
gaussian_noise?: AugmentationParams
salt_pepper?: AugmentationParams
paper_texture?: AugmentationParams
scanner_artifacts?: AugmentationParams
preserve_bboxes?: boolean
seed?: number | null
}
export interface BatchRequest {
dataset_id: string
config: AugmentationConfig
output_name: string
multiplier: number
}
export interface BatchResponse {
task_id: string
status: string
message: string
estimated_images: number
}
// API functions
export const augmentationApi = {
/**
* Fetch available augmentation types.
*/
async getTypes(): Promise<AugmentationTypesResponse> {
const response = await apiClient.get<AugmentationTypesResponse>(
'/api/v1/admin/augmentation/types'
)
return response.data
},
/**
* Fetch augmentation presets.
*/
async getPresets(): Promise<PresetsResponse> {
const response = await apiClient.get<PresetsResponse>(
'/api/v1/admin/augmentation/presets'
)
return response.data
},
/**
* Preview a single augmentation on a document page.
*/
async preview(
documentId: string,
request: PreviewRequest,
page: number = 1
): Promise<PreviewResponse> {
const response = await apiClient.post<PreviewResponse>(
`/api/v1/admin/augmentation/preview/${documentId}`,
request,
{ params: { page } }
)
return response.data
},
/**
* Preview full augmentation config on a document page.
*/
async previewConfig(
documentId: string,
config: AugmentationConfig,
page: number = 1
): Promise<PreviewResponse> {
const response = await apiClient.post<PreviewResponse>(
`/api/v1/admin/augmentation/preview-config/${documentId}`,
config,
{ params: { page } }
)
return response.data
},
/**
* Create an augmented dataset.
*/
async createBatch(request: BatchRequest): Promise<BatchResponse> {
const response = await apiClient.post<BatchResponse>(
'/api/v1/admin/augmentation/batch',
request
)
return response.data
},
}

View File

@@ -0,0 +1,52 @@
import apiClient from '../client'
import type {
DatasetCreateRequest,
DatasetDetailResponse,
DatasetListResponse,
DatasetResponse,
DatasetTrainRequest,
TrainingTaskResponse,
} from '../types'
export const datasetsApi = {
list: async (params?: {
status?: string
limit?: number
offset?: number
}): Promise<DatasetListResponse> => {
const { data } = await apiClient.get('/api/v1/admin/training/datasets', {
params,
})
return data
},
create: async (req: DatasetCreateRequest): Promise<DatasetResponse> => {
const { data } = await apiClient.post('/api/v1/admin/training/datasets', req)
return data
},
getDetail: async (datasetId: string): Promise<DatasetDetailResponse> => {
const { data } = await apiClient.get(
`/api/v1/admin/training/datasets/${datasetId}`
)
return data
},
remove: async (datasetId: string): Promise<{ message: string }> => {
const { data } = await apiClient.delete(
`/api/v1/admin/training/datasets/${datasetId}`
)
return data
},
trainFromDataset: async (
datasetId: string,
req: DatasetTrainRequest
): Promise<TrainingTaskResponse> => {
const { data } = await apiClient.post(
`/api/v1/admin/training/datasets/${datasetId}/train`,
req
)
return data
},
}

View File

@@ -0,0 +1,122 @@
import apiClient from '../client'
import type {
DocumentListResponse,
DocumentDetailResponse,
DocumentItem,
UploadDocumentResponse,
DocumentCategoriesResponse,
} from '../types'
export const documentsApi = {
list: async (params?: {
status?: string
category?: string
limit?: number
offset?: number
}): Promise<DocumentListResponse> => {
const { data } = await apiClient.get('/api/v1/admin/documents', { params })
return data
},
getCategories: async (): Promise<DocumentCategoriesResponse> => {
const { data } = await apiClient.get('/api/v1/admin/documents/categories')
return data
},
getDetail: async (documentId: string): Promise<DocumentDetailResponse> => {
const { data } = await apiClient.get(`/api/v1/admin/documents/${documentId}`)
return data
},
upload: async (
file: File,
options?: { groupKey?: string; category?: string }
): Promise<UploadDocumentResponse> => {
const formData = new FormData()
formData.append('file', file)
const params: Record<string, string> = {}
if (options?.groupKey) {
params.group_key = options.groupKey
}
if (options?.category) {
params.category = options.category
}
const { data } = await apiClient.post('/api/v1/admin/documents', formData, {
headers: {
'Content-Type': 'multipart/form-data',
},
params,
})
return data
},
batchUpload: async (
files: File[],
csvFile?: File
): Promise<{ batch_id: string; message: string; documents_created: number }> => {
const formData = new FormData()
files.forEach((file) => {
formData.append('files', file)
})
if (csvFile) {
formData.append('csv_file', csvFile)
}
const { data } = await apiClient.post('/api/v1/admin/batch/upload', formData, {
headers: {
'Content-Type': 'multipart/form-data',
},
})
return data
},
delete: async (documentId: string): Promise<void> => {
await apiClient.delete(`/api/v1/admin/documents/${documentId}`)
},
updateStatus: async (
documentId: string,
status: string
): Promise<DocumentItem> => {
const { data } = await apiClient.patch(
`/api/v1/admin/documents/${documentId}/status`,
null,
{ params: { status } }
)
return data
},
triggerAutoLabel: async (documentId: string): Promise<{ message: string }> => {
const { data } = await apiClient.post(
`/api/v1/admin/documents/${documentId}/auto-label`
)
return data
},
updateGroupKey: async (
documentId: string,
groupKey: string | null
): Promise<{ status: string; document_id: string; group_key: string | null; message: string }> => {
const { data } = await apiClient.patch(
`/api/v1/admin/documents/${documentId}/group-key`,
null,
{ params: { group_key: groupKey } }
)
return data
},
updateCategory: async (
documentId: string,
category: string
): Promise<{ status: string; document_id: string; category: string; message: string }> => {
const { data } = await apiClient.patch(
`/api/v1/admin/documents/${documentId}/category`,
{ category }
)
return data
},
}

View File

@@ -0,0 +1,7 @@
export { documentsApi } from './documents'
export { annotationsApi } from './annotations'
export { trainingApi } from './training'
export { inferenceApi } from './inference'
export { datasetsApi } from './datasets'
export { augmentationApi } from './augmentation'
export { modelsApi } from './models'

View File

@@ -0,0 +1,16 @@
import apiClient from '../client'
import type { InferenceResponse } from '../types'
export const inferenceApi = {
processDocument: async (file: File): Promise<InferenceResponse> => {
const formData = new FormData()
formData.append('file', file)
const { data } = await apiClient.post('/api/v1/infer', formData, {
headers: {
'Content-Type': 'multipart/form-data',
},
})
return data
},
}

View File

@@ -0,0 +1,55 @@
import apiClient from '../client'
import type {
ModelVersionListResponse,
ModelVersionDetailResponse,
ModelVersionResponse,
ActiveModelResponse,
} from '../types'
export const modelsApi = {
list: async (params?: {
status?: string
limit?: number
offset?: number
}): Promise<ModelVersionListResponse> => {
const { data } = await apiClient.get('/api/v1/admin/training/models', {
params,
})
return data
},
getDetail: async (versionId: string): Promise<ModelVersionDetailResponse> => {
const { data } = await apiClient.get(`/api/v1/admin/training/models/${versionId}`)
return data
},
getActive: async (): Promise<ActiveModelResponse> => {
const { data } = await apiClient.get('/api/v1/admin/training/models/active')
return data
},
activate: async (versionId: string): Promise<ModelVersionResponse> => {
const { data } = await apiClient.post(`/api/v1/admin/training/models/${versionId}/activate`)
return data
},
deactivate: async (versionId: string): Promise<ModelVersionResponse> => {
const { data } = await apiClient.post(`/api/v1/admin/training/models/${versionId}/deactivate`)
return data
},
archive: async (versionId: string): Promise<ModelVersionResponse> => {
const { data } = await apiClient.post(`/api/v1/admin/training/models/${versionId}/archive`)
return data
},
delete: async (versionId: string): Promise<{ message: string }> => {
const { data } = await apiClient.delete(`/api/v1/admin/training/models/${versionId}`)
return data
},
reload: async (): Promise<{ message: string; reloaded: boolean }> => {
const { data } = await apiClient.post('/api/v1/admin/training/models/reload')
return data
},
}

View File

@@ -0,0 +1,74 @@
import apiClient from '../client'
import type { TrainingModelsResponse, DocumentListResponse } from '../types'
export const trainingApi = {
getDocumentsForTraining: async (params?: {
has_annotations?: boolean
min_annotation_count?: number
exclude_used_in_training?: boolean
limit?: number
offset?: number
}): Promise<DocumentListResponse> => {
const { data } = await apiClient.get('/api/v1/admin/training/documents', {
params,
})
return data
},
getModels: async (params?: {
status?: string
limit?: number
offset?: number
}): Promise<TrainingModelsResponse> => {
const { data} = await apiClient.get('/api/v1/admin/training/models', {
params,
})
return data
},
getTaskDetail: async (taskId: string) => {
const { data } = await apiClient.get(`/api/v1/admin/training/tasks/${taskId}`)
return data
},
startTraining: async (config: {
name: string
description?: string
document_ids: string[]
epochs?: number
batch_size?: number
model_base?: string
}) => {
// Convert frontend config to backend TrainingTaskCreate format
const taskRequest = {
name: config.name,
task_type: 'yolo',
description: config.description,
config: {
document_ids: config.document_ids,
epochs: config.epochs,
batch_size: config.batch_size,
base_model: config.model_base,
},
}
const { data } = await apiClient.post('/api/v1/admin/training/tasks', taskRequest)
return data
},
cancelTask: async (taskId: string) => {
const { data } = await apiClient.post(
`/api/v1/admin/training/tasks/${taskId}/cancel`
)
return data
},
downloadModel: async (taskId: string): Promise<Blob> => {
const { data } = await apiClient.get(
`/api/v1/admin/training/models/${taskId}/download`,
{
responseType: 'blob',
}
)
return data
},
}

364
frontend/src/api/types.ts Normal file
View File

@@ -0,0 +1,364 @@
export interface DocumentItem {
document_id: string
filename: string
file_size: number
content_type: string
page_count: number
status: 'pending' | 'labeled' | 'verified' | 'exported'
auto_label_status: 'pending' | 'running' | 'completed' | 'failed' | null
auto_label_error: string | null
upload_source: string
group_key: string | null
category: string
created_at: string
updated_at: string
annotation_count?: number
annotation_sources?: {
manual: number
auto: number
verified: number
}
}
export interface DocumentListResponse {
documents: DocumentItem[]
total: number
limit: number
offset: number
}
export interface AnnotationItem {
annotation_id: string
page_number: number
class_id: number
class_name: string
bbox: {
x: number
y: number
width: number
height: number
}
normalized_bbox: {
x_center: number
y_center: number
width: number
height: number
}
text_value: string | null
confidence: number | null
source: 'manual' | 'auto'
created_at: string
}
export interface DocumentDetailResponse {
document_id: string
filename: string
file_size: number
content_type: string
page_count: number
status: 'pending' | 'labeled' | 'verified' | 'exported'
auto_label_status: 'pending' | 'running' | 'completed' | 'failed' | null
auto_label_error: string | null
upload_source: string
batch_id: string | null
group_key: string | null
category: string
csv_field_values: Record<string, string> | null
can_annotate: boolean
annotation_lock_until: string | null
annotations: AnnotationItem[]
image_urls: string[]
training_history: Array<{
task_id: string
name: string
trained_at: string
model_metrics: {
mAP: number | null
precision: number | null
recall: number | null
} | null
}>
created_at: string
updated_at: string
}
export interface TrainingTask {
task_id: string
admin_token: string
name: string
description: string | null
status: 'pending' | 'running' | 'completed' | 'failed'
task_type: string
config: Record<string, unknown>
started_at: string | null
completed_at: string | null
error_message: string | null
result_metrics: Record<string, unknown>
model_path: string | null
document_count: number
metrics_mAP: number | null
metrics_precision: number | null
metrics_recall: number | null
created_at: string
updated_at: string
}
export interface ModelVersionItem {
version_id: string
version: string
name: string
status: string
is_active: boolean
metrics_mAP: number | null
document_count: number
trained_at: string | null
activated_at: string | null
created_at: string
}
export interface TrainingModelsResponse {
models: ModelVersionItem[]
total: number
limit: number
offset: number
}
export interface ErrorResponse {
detail: string
}
export interface UploadDocumentResponse {
document_id: string
filename: string
file_size: number
page_count: number
status: string
category: string
group_key: string | null
auto_label_started: boolean
message: string
}
export interface DocumentCategoriesResponse {
categories: string[]
total: number
}
export interface CreateAnnotationRequest {
page_number: number
class_id: number
bbox: {
x: number
y: number
width: number
height: number
}
text_value?: string
}
export interface AnnotationOverrideRequest {
text_value?: string
bbox?: {
x: number
y: number
width: number
height: number
}
class_id?: number
class_name?: string
reason?: string
}
export interface CrossValidationResult {
is_valid: boolean
payment_line_ocr: string | null
payment_line_amount: string | null
payment_line_account: string | null
payment_line_account_type: 'bankgiro' | 'plusgiro' | null
ocr_match: boolean | null
amount_match: boolean | null
bankgiro_match: boolean | null
plusgiro_match: boolean | null
details: string[]
}
export interface InferenceResult {
document_id: string
document_type: string
success: boolean
fields: Record<string, string>
confidence: Record<string, number>
cross_validation: CrossValidationResult | null
processing_time_ms: number
visualization_url: string | null
errors: string[]
fallback_used: boolean
}
export interface InferenceResponse {
result: InferenceResult
}
// Dataset types
export interface DatasetCreateRequest {
name: string
description?: string
document_ids: string[]
train_ratio?: number
val_ratio?: number
seed?: number
}
export interface DatasetResponse {
dataset_id: string
name: string
status: string
message: string
}
export interface DatasetDocumentItem {
document_id: string
split: string
page_count: number
annotation_count: number
}
export interface DatasetListItem {
dataset_id: string
name: string
description: string | null
status: string
training_status: string | null
active_training_task_id: string | null
total_documents: number
total_images: number
total_annotations: number
created_at: string
}
export interface DatasetListResponse {
total: number
limit: number
offset: number
datasets: DatasetListItem[]
}
export interface DatasetDetailResponse {
dataset_id: string
name: string
description: string | null
status: string
training_status: string | null
active_training_task_id: string | null
train_ratio: number
val_ratio: number
seed: number
total_documents: number
total_images: number
total_annotations: number
dataset_path: string | null
error_message: string | null
documents: DatasetDocumentItem[]
created_at: string
updated_at: string
}
export interface AugmentationParams {
enabled: boolean
probability: number
params: Record<string, unknown>
}
export interface AugmentationTrainingConfig {
gaussian_noise?: AugmentationParams
perspective_warp?: AugmentationParams
wrinkle?: AugmentationParams
edge_damage?: AugmentationParams
stain?: AugmentationParams
lighting_variation?: AugmentationParams
shadow?: AugmentationParams
gaussian_blur?: AugmentationParams
motion_blur?: AugmentationParams
salt_pepper?: AugmentationParams
paper_texture?: AugmentationParams
scanner_artifacts?: AugmentationParams
preserve_bboxes?: boolean
seed?: number | null
}
export interface DatasetTrainRequest {
name: string
config: {
model_name?: string
base_model_version_id?: string | null
epochs?: number
batch_size?: number
image_size?: number
learning_rate?: number
device?: string
augmentation?: AugmentationTrainingConfig
augmentation_multiplier?: number
}
}
export interface TrainingTaskResponse {
task_id: string
status: string
message: string
}
// Model Version types
export interface ModelVersionItem {
version_id: string
version: string
name: string
status: string
is_active: boolean
metrics_mAP: number | null
document_count: number
trained_at: string | null
activated_at: string | null
created_at: string
}
export interface ModelVersionDetailResponse {
version_id: string
version: string
name: string
description: string | null
model_path: string
status: string
is_active: boolean
task_id: string | null
dataset_id: string | null
metrics_mAP: number | null
metrics_precision: number | null
metrics_recall: number | null
document_count: number
training_config: Record<string, unknown> | null
file_size: number | null
trained_at: string | null
activated_at: string | null
created_at: string
updated_at: string
}
export interface ModelVersionListResponse {
total: number
limit: number
offset: number
models: ModelVersionItem[]
}
export interface ModelVersionResponse {
version_id: string
status: string
message: string
}
export interface ActiveModelResponse {
has_active_model: boolean
model: ModelVersionItem | null
}

View File

@@ -0,0 +1,251 @@
/**
* Tests for AugmentationConfig component.
*
* TDD Phase 1: RED - Write tests first, then implement to pass.
*/
import { describe, it, expect, vi, beforeEach } from 'vitest'
import { render, screen, fireEvent, waitFor } from '@testing-library/react'
import userEvent from '@testing-library/user-event'
import { QueryClient, QueryClientProvider } from '@tanstack/react-query'
import { AugmentationConfig } from './AugmentationConfig'
import { augmentationApi } from '../api/endpoints/augmentation'
import type { ReactNode } from 'react'
// Mock the API
vi.mock('../api/endpoints/augmentation', () => ({
augmentationApi: {
getTypes: vi.fn(),
getPresets: vi.fn(),
preview: vi.fn(),
previewConfig: vi.fn(),
createBatch: vi.fn(),
},
}))
// Default mock data
const mockTypes = {
augmentation_types: [
{
name: 'gaussian_noise',
description: 'Adds Gaussian noise to simulate sensor noise',
affects_geometry: false,
stage: 'noise',
default_params: { mean: 0, std: 15 },
},
{
name: 'perspective_warp',
description: 'Applies perspective transformation',
affects_geometry: true,
stage: 'geometric',
default_params: { max_warp: 0.02 },
},
{
name: 'gaussian_blur',
description: 'Applies Gaussian blur',
affects_geometry: false,
stage: 'blur',
default_params: { kernel_size: 5 },
},
],
}
const mockPresets = {
presets: [
{ name: 'conservative', description: 'Safe augmentations for high-quality documents' },
{ name: 'moderate', description: 'Balanced augmentation settings' },
{ name: 'aggressive', description: 'Strong augmentations for data diversity' },
],
}
// Test wrapper with QueryClient
const createWrapper = () => {
const queryClient = new QueryClient({
defaultOptions: {
queries: {
retry: false,
},
},
})
return ({ children }: { children: ReactNode }) => (
<QueryClientProvider client={queryClient}>{children}</QueryClientProvider>
)
}
describe('AugmentationConfig', () => {
beforeEach(() => {
vi.clearAllMocks()
vi.mocked(augmentationApi.getTypes).mockResolvedValue(mockTypes)
vi.mocked(augmentationApi.getPresets).mockResolvedValue(mockPresets)
})
describe('rendering', () => {
it('should render enable checkbox', async () => {
render(
<AugmentationConfig
enabled={false}
onEnabledChange={vi.fn()}
config={{}}
onConfigChange={vi.fn()}
/>,
{ wrapper: createWrapper() }
)
expect(screen.getByRole('checkbox', { name: /enable augmentation/i })).toBeInTheDocument()
})
it('should be collapsed when disabled', () => {
render(
<AugmentationConfig
enabled={false}
onEnabledChange={vi.fn()}
config={{}}
onConfigChange={vi.fn()}
/>,
{ wrapper: createWrapper() }
)
// Config options should not be visible
expect(screen.queryByText(/preset/i)).not.toBeInTheDocument()
})
it('should expand when enabled', async () => {
render(
<AugmentationConfig
enabled={true}
onEnabledChange={vi.fn()}
config={{}}
onConfigChange={vi.fn()}
/>,
{ wrapper: createWrapper() }
)
await waitFor(() => {
expect(screen.getByText(/preset/i)).toBeInTheDocument()
})
})
})
describe('preset selection', () => {
it('should display available presets', async () => {
render(
<AugmentationConfig
enabled={true}
onEnabledChange={vi.fn()}
config={{}}
onConfigChange={vi.fn()}
/>,
{ wrapper: createWrapper() }
)
await waitFor(() => {
expect(screen.getByText('conservative')).toBeInTheDocument()
expect(screen.getByText('moderate')).toBeInTheDocument()
expect(screen.getByText('aggressive')).toBeInTheDocument()
})
})
it('should call onConfigChange when preset is selected', async () => {
const user = userEvent.setup()
const onConfigChange = vi.fn()
render(
<AugmentationConfig
enabled={true}
onEnabledChange={vi.fn()}
config={{}}
onConfigChange={onConfigChange}
/>,
{ wrapper: createWrapper() }
)
await waitFor(() => {
expect(screen.getByText('moderate')).toBeInTheDocument()
})
await user.click(screen.getByText('moderate'))
expect(onConfigChange).toHaveBeenCalled()
})
})
describe('enable toggle', () => {
it('should call onEnabledChange when checkbox is toggled', async () => {
const user = userEvent.setup()
const onEnabledChange = vi.fn()
render(
<AugmentationConfig
enabled={false}
onEnabledChange={onEnabledChange}
config={{}}
onConfigChange={vi.fn()}
/>,
{ wrapper: createWrapper() }
)
await user.click(screen.getByRole('checkbox', { name: /enable augmentation/i }))
expect(onEnabledChange).toHaveBeenCalledWith(true)
})
})
describe('augmentation types', () => {
it('should display augmentation types when in custom mode', async () => {
render(
<AugmentationConfig
enabled={true}
onEnabledChange={vi.fn()}
config={{}}
onConfigChange={vi.fn()}
showCustomOptions={true}
/>,
{ wrapper: createWrapper() }
)
await waitFor(() => {
expect(screen.getByText(/gaussian_noise/i)).toBeInTheDocument()
expect(screen.getByText(/perspective_warp/i)).toBeInTheDocument()
})
})
it('should indicate which augmentations affect geometry', async () => {
render(
<AugmentationConfig
enabled={true}
onEnabledChange={vi.fn()}
config={{}}
onConfigChange={vi.fn()}
showCustomOptions={true}
/>,
{ wrapper: createWrapper() }
)
await waitFor(() => {
// perspective_warp affects geometry
const perspectiveItem = screen.getByText(/perspective_warp/i).closest('div')
expect(perspectiveItem).toHaveTextContent(/affects bbox/i)
})
})
})
describe('loading state', () => {
it('should show loading indicator while fetching types', () => {
vi.mocked(augmentationApi.getTypes).mockImplementation(
() => new Promise(() => {})
)
render(
<AugmentationConfig
enabled={true}
onEnabledChange={vi.fn()}
config={{}}
onConfigChange={vi.fn()}
/>,
{ wrapper: createWrapper() }
)
expect(screen.getByTestId('augmentation-loading')).toBeInTheDocument()
})
})
})

View File

@@ -0,0 +1,136 @@
/**
* AugmentationConfig component for configuring image augmentation during training.
*
* Provides preset selection and optional custom augmentation type configuration.
*/
import React from 'react'
import { Loader2, AlertTriangle } from 'lucide-react'
import { useAugmentation } from '../hooks/useAugmentation'
import type { AugmentationConfig as AugmentationConfigType } from '../api/endpoints/augmentation'
interface AugmentationConfigProps {
enabled: boolean
onEnabledChange: (enabled: boolean) => void
config: Partial<AugmentationConfigType>
onConfigChange: (config: Partial<AugmentationConfigType>) => void
showCustomOptions?: boolean
}
export const AugmentationConfig: React.FC<AugmentationConfigProps> = ({
enabled,
onEnabledChange,
config,
onConfigChange,
showCustomOptions = false,
}) => {
const { augmentationTypes, presets, isLoadingTypes, isLoadingPresets } = useAugmentation()
const isLoading = isLoadingTypes || isLoadingPresets
const handlePresetSelect = (presetName: string) => {
const preset = presets.find((p) => p.name === presetName)
if (preset && preset.config) {
onConfigChange(preset.config as Partial<AugmentationConfigType>)
} else {
// Apply a basic config based on preset name
const presetConfigs: Record<string, Partial<AugmentationConfigType>> = {
conservative: {
gaussian_noise: { enabled: true, probability: 0.3, params: { std: 10 } },
gaussian_blur: { enabled: true, probability: 0.2, params: { kernel_size: 3 } },
},
moderate: {
gaussian_noise: { enabled: true, probability: 0.5, params: { std: 15 } },
gaussian_blur: { enabled: true, probability: 0.3, params: { kernel_size: 5 } },
lighting_variation: { enabled: true, probability: 0.3, params: {} },
perspective_warp: { enabled: true, probability: 0.2, params: { max_warp: 0.02 } },
},
aggressive: {
gaussian_noise: { enabled: true, probability: 0.7, params: { std: 20 } },
gaussian_blur: { enabled: true, probability: 0.5, params: { kernel_size: 7 } },
motion_blur: { enabled: true, probability: 0.3, params: {} },
lighting_variation: { enabled: true, probability: 0.5, params: {} },
shadow: { enabled: true, probability: 0.3, params: {} },
perspective_warp: { enabled: true, probability: 0.3, params: { max_warp: 0.03 } },
wrinkle: { enabled: true, probability: 0.2, params: {} },
stain: { enabled: true, probability: 0.2, params: {} },
},
}
onConfigChange(presetConfigs[presetName] || {})
}
}
return (
<div className="border border-warm-divider rounded-lg p-4 bg-warm-bg-secondary">
{/* Enable checkbox */}
<label className="flex items-center gap-2 cursor-pointer">
<input
type="checkbox"
checked={enabled}
onChange={(e) => onEnabledChange(e.target.checked)}
className="w-4 h-4 rounded border-warm-divider text-warm-state-info focus:ring-warm-state-info"
aria-label="Enable augmentation"
/>
<span className="text-sm font-medium text-warm-text-secondary">Enable Augmentation</span>
<span className="text-xs text-warm-text-muted">(Simulate real-world document conditions)</span>
</label>
{/* Expanded content when enabled */}
{enabled && (
<div className="mt-4 space-y-4">
{isLoading ? (
<div className="flex items-center justify-center py-4" data-testid="augmentation-loading">
<Loader2 className="w-5 h-5 animate-spin text-warm-state-info" />
<span className="ml-2 text-sm text-warm-text-muted">Loading augmentation options...</span>
</div>
) : (
<>
{/* Preset selection */}
<div>
<label className="block text-sm font-medium text-warm-text-secondary mb-2">Preset</label>
<div className="flex flex-wrap gap-2">
{presets.map((preset) => (
<button
key={preset.name}
onClick={() => handlePresetSelect(preset.name)}
className="px-3 py-1.5 text-sm rounded-md border border-warm-divider hover:bg-warm-bg-tertiary transition-colors"
title={preset.description}
>
{preset.name}
</button>
))}
</div>
</div>
{/* Custom options (if enabled) */}
{showCustomOptions && (
<div className="border-t border-warm-divider pt-4">
<h4 className="text-sm font-medium text-warm-text-secondary mb-3">Augmentation Types</h4>
<div className="grid gap-2">
{augmentationTypes.map((type) => (
<div
key={type.name}
className="flex items-center justify-between p-2 bg-warm-bg-primary rounded border border-warm-divider"
>
<div className="flex items-center gap-2">
<span className="text-sm text-warm-text-primary">{type.name}</span>
{type.affects_geometry && (
<span className="flex items-center gap-1 text-xs text-warm-state-warning">
<AlertTriangle size={12} />
affects bbox
</span>
)}
</div>
<span className="text-xs text-warm-text-muted">{type.stage}</span>
</div>
))}
</div>
</div>
)}
</>
)}
</div>
)}
</div>
)
}

View File

@@ -0,0 +1,32 @@
import { render, screen } from '@testing-library/react';
import { describe, it, expect } from 'vitest';
import { Badge } from './Badge';
import { DocumentStatus } from '../types';
describe('Badge', () => {
it('renders Exported badge with check icon', () => {
render(<Badge status="Exported" />);
expect(screen.getByText('Exported')).toBeInTheDocument();
});
it('renders Pending status', () => {
render(<Badge status={DocumentStatus.PENDING} />);
expect(screen.getByText('Pending')).toBeInTheDocument();
});
it('renders Verified status', () => {
render(<Badge status={DocumentStatus.VERIFIED} />);
expect(screen.getByText('Verified')).toBeInTheDocument();
});
it('renders Labeled status', () => {
render(<Badge status={DocumentStatus.LABELED} />);
expect(screen.getByText('Labeled')).toBeInTheDocument();
});
it('renders Partial status with warning indicator', () => {
render(<Badge status={DocumentStatus.PARTIAL} />);
expect(screen.getByText('Partial')).toBeInTheDocument();
expect(screen.getByText('!')).toBeInTheDocument();
});
});

View File

@@ -0,0 +1,39 @@
import React from 'react';
import { DocumentStatus } from '../types';
import { Check } from 'lucide-react';
interface BadgeProps {
status: DocumentStatus | 'Exported';
}
export const Badge: React.FC<BadgeProps> = ({ status }) => {
if (status === 'Exported') {
return (
<span className="inline-flex items-center gap-1.5 px-2.5 py-1 rounded-full text-xs font-medium bg-warm-selected text-warm-text-secondary">
<Check size={12} strokeWidth={3} />
Exported
</span>
);
}
const styles = {
[DocumentStatus.PENDING]: "bg-white border border-warm-divider text-warm-text-secondary",
[DocumentStatus.LABELED]: "bg-warm-text-secondary text-white border border-transparent",
[DocumentStatus.VERIFIED]: "bg-warm-state-success/10 text-warm-state-success border border-warm-state-success/20",
[DocumentStatus.PARTIAL]: "bg-warm-state-warning/10 text-warm-state-warning border border-warm-state-warning/20",
};
const icons = {
[DocumentStatus.VERIFIED]: <Check size={12} className="mr-1" />,
[DocumentStatus.PARTIAL]: <span className="mr-1 text-[10px] font-bold">!</span>,
[DocumentStatus.PENDING]: null,
[DocumentStatus.LABELED]: null,
}
return (
<span className={`inline-flex items-center px-3 py-1 rounded-full text-xs font-medium border ${styles[status]}`}>
{icons[status]}
{status}
</span>
);
};

View File

@@ -0,0 +1,38 @@
import { render, screen } from '@testing-library/react';
import userEvent from '@testing-library/user-event';
import { describe, it, expect, vi } from 'vitest';
import { Button } from './Button';
describe('Button', () => {
it('renders children text', () => {
render(<Button>Click me</Button>);
expect(screen.getByRole('button', { name: 'Click me' })).toBeInTheDocument();
});
it('calls onClick handler', async () => {
const user = userEvent.setup();
const onClick = vi.fn();
render(<Button onClick={onClick}>Click</Button>);
await user.click(screen.getByRole('button'));
expect(onClick).toHaveBeenCalledOnce();
});
it('is disabled when disabled prop is set', () => {
render(<Button disabled>Disabled</Button>);
expect(screen.getByRole('button')).toBeDisabled();
});
it('applies variant styles', () => {
const { rerender } = render(<Button variant="primary">Primary</Button>);
const btn = screen.getByRole('button');
expect(btn.className).toContain('bg-warm-text-secondary');
rerender(<Button variant="secondary">Secondary</Button>);
expect(screen.getByRole('button').className).toContain('border');
});
it('applies size styles', () => {
render(<Button size="sm">Small</Button>);
expect(screen.getByRole('button').className).toContain('h-8');
});
});

View File

@@ -0,0 +1,38 @@
import React from 'react';
interface ButtonProps extends React.ButtonHTMLAttributes<HTMLButtonElement> {
variant?: 'primary' | 'secondary' | 'outline' | 'text';
size?: 'sm' | 'md' | 'lg';
}
export const Button: React.FC<ButtonProps> = ({
variant = 'primary',
size = 'md',
className = '',
children,
...props
}) => {
const baseStyles = "inline-flex items-center justify-center rounded-md font-medium transition-all duration-150 ease-out active:scale-98 disabled:opacity-50 disabled:pointer-events-none";
const variants = {
primary: "bg-warm-text-secondary text-white hover:bg-warm-text-primary shadow-sm",
secondary: "bg-white border border-warm-divider text-warm-text-secondary hover:bg-warm-hover",
outline: "bg-transparent border border-warm-text-secondary text-warm-text-secondary hover:bg-warm-hover",
text: "text-warm-text-muted hover:text-warm-text-primary hover:bg-warm-hover",
};
const sizes = {
sm: "h-8 px-3 text-xs",
md: "h-10 px-4 text-sm",
lg: "h-12 px-6 text-base",
};
return (
<button
className={`${baseStyles} ${variants[variant]} ${sizes[size]} ${className}`}
{...props}
>
{children}
</button>
);
};

View File

@@ -0,0 +1,300 @@
import React, { useState } from 'react'
import { Search, ChevronDown, MoreHorizontal, FileText } from 'lucide-react'
import { Badge } from './Badge'
import { Button } from './Button'
import { UploadModal } from './UploadModal'
import { useDocuments, useCategories } from '../hooks/useDocuments'
import type { DocumentItem } from '../api/types'
interface DashboardProps {
onNavigate: (view: string, docId?: string) => void
}
const getStatusForBadge = (status: string): string => {
const statusMap: Record<string, string> = {
pending: 'Pending',
labeled: 'Labeled',
verified: 'Verified',
exported: 'Exported',
}
return statusMap[status] || status
}
const getAutoLabelProgress = (doc: DocumentItem): number | undefined => {
if (doc.auto_label_status === 'running') {
return 45
}
if (doc.auto_label_status === 'completed') {
return 100
}
return undefined
}
export const Dashboard: React.FC<DashboardProps> = ({ onNavigate }) => {
const [isUploadOpen, setIsUploadOpen] = useState(false)
const [selectedDocs, setSelectedDocs] = useState<Set<string>>(new Set())
const [statusFilter, setStatusFilter] = useState<string>('')
const [categoryFilter, setCategoryFilter] = useState<string>('')
const [limit] = useState(20)
const [offset] = useState(0)
const { categories } = useCategories()
const { documents, total, isLoading, error, refetch } = useDocuments({
status: statusFilter || undefined,
category: categoryFilter || undefined,
limit,
offset,
})
const toggleSelection = (id: string) => {
const newSet = new Set(selectedDocs)
if (newSet.has(id)) {
newSet.delete(id)
} else {
newSet.add(id)
}
setSelectedDocs(newSet)
}
if (error) {
return (
<div className="p-8 max-w-7xl mx-auto">
<div className="bg-red-50 border border-red-200 text-red-800 p-4 rounded-lg">
Error loading documents. Please check your connection to the backend API.
<button
onClick={() => refetch()}
className="ml-4 underline hover:no-underline"
>
Retry
</button>
</div>
</div>
)
}
return (
<div className="p-8 max-w-7xl mx-auto animate-fade-in">
<div className="flex items-center justify-between mb-8">
<div>
<h1 className="text-3xl font-bold text-warm-text-primary tracking-tight">
Documents
</h1>
<p className="text-sm text-warm-text-muted mt-1">
{isLoading ? 'Loading...' : `${total} documents total`}
</p>
</div>
<div className="flex gap-3">
<Button variant="secondary" disabled={selectedDocs.size === 0}>
Export Selection ({selectedDocs.size})
</Button>
<Button onClick={() => setIsUploadOpen(true)}>Upload Documents</Button>
</div>
</div>
<div className="bg-warm-card border border-warm-border rounded-lg p-4 mb-6 shadow-sm flex flex-wrap gap-4 items-center">
<div className="relative flex-1 min-w-[200px]">
<Search
className="absolute left-3 top-1/2 -translate-y-1/2 text-warm-text-muted"
size={16}
/>
<input
type="text"
placeholder="Search documents..."
className="w-full pl-9 pr-4 h-10 rounded-md border border-warm-border bg-white focus:outline-none focus:ring-1 focus:ring-warm-state-info transition-shadow text-sm"
/>
</div>
<div className="flex gap-3">
<div className="relative">
<select
value={categoryFilter}
onChange={(e) => setCategoryFilter(e.target.value)}
className="h-10 pl-3 pr-8 rounded-md border border-warm-border bg-white text-sm text-warm-text-secondary focus:outline-none appearance-none cursor-pointer hover:bg-warm-hover"
>
<option value="">All Categories</option>
{categories.map((cat) => (
<option key={cat} value={cat}>
{cat.charAt(0).toUpperCase() + cat.slice(1)}
</option>
))}
</select>
<ChevronDown
className="absolute right-2.5 top-1/2 -translate-y-1/2 pointer-events-none text-warm-text-muted"
size={14}
/>
</div>
<div className="relative">
<select
value={statusFilter}
onChange={(e) => setStatusFilter(e.target.value)}
className="h-10 pl-3 pr-8 rounded-md border border-warm-border bg-white text-sm text-warm-text-secondary focus:outline-none appearance-none cursor-pointer hover:bg-warm-hover"
>
<option value="">All Statuses</option>
<option value="pending">Pending</option>
<option value="labeled">Labeled</option>
<option value="verified">Verified</option>
<option value="exported">Exported</option>
</select>
<ChevronDown
className="absolute right-2.5 top-1/2 -translate-y-1/2 pointer-events-none text-warm-text-muted"
size={14}
/>
</div>
</div>
</div>
<div className="bg-warm-card border border-warm-border rounded-lg shadow-sm overflow-hidden">
<table className="w-full text-left border-collapse">
<thead>
<tr className="border-b border-warm-border bg-white">
<th className="py-3 pl-6 pr-4 w-12">
<input
type="checkbox"
className="rounded border-warm-divider text-warm-text-primary focus:ring-warm-text-secondary"
/>
</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase tracking-wider">
Document Name
</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase tracking-wider">
Date
</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase tracking-wider">
Status
</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase tracking-wider">
Annotations
</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase tracking-wider">
Category
</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase tracking-wider">
Group
</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase tracking-wider w-64">
Auto-label
</th>
<th className="py-3 px-4 w-12"></th>
</tr>
</thead>
<tbody>
{isLoading ? (
<tr>
<td colSpan={9} className="py-8 text-center text-warm-text-muted">
Loading documents...
</td>
</tr>
) : documents.length === 0 ? (
<tr>
<td colSpan={9} className="py-8 text-center text-warm-text-muted">
No documents found. Upload your first document to get started.
</td>
</tr>
) : (
documents.map((doc) => {
const isSelected = selectedDocs.has(doc.document_id)
const progress = getAutoLabelProgress(doc)
return (
<tr
key={doc.document_id}
onClick={() => onNavigate('detail', doc.document_id)}
className={`
group transition-colors duration-150 cursor-pointer border-b border-warm-border last:border-0
${isSelected ? 'bg-warm-selected' : 'hover:bg-warm-hover bg-white'}
`}
>
<td
className="py-4 pl-6 pr-4 relative"
onClick={(e) => {
e.stopPropagation()
toggleSelection(doc.document_id)
}}
>
{isSelected && (
<div className="absolute left-0 top-0 bottom-0 w-[3px] bg-warm-state-info" />
)}
<input
type="checkbox"
checked={isSelected}
readOnly
className="rounded border-warm-divider text-warm-text-primary focus:ring-warm-text-secondary cursor-pointer"
/>
</td>
<td className="py-4 px-4">
<div className="flex items-center gap-3">
<div className="p-2 bg-warm-bg rounded border border-warm-border text-warm-text-muted">
<FileText size={16} />
</div>
<span className="font-medium text-warm-text-secondary">
{doc.filename}
</span>
</div>
</td>
<td className="py-4 px-4 text-sm text-warm-text-secondary font-mono">
{new Date(doc.created_at).toLocaleDateString()}
</td>
<td className="py-4 px-4">
<Badge status={getStatusForBadge(doc.status)} />
</td>
<td className="py-4 px-4 text-sm text-warm-text-secondary">
{doc.annotation_count || 0} annotations
</td>
<td className="py-4 px-4 text-sm text-warm-text-secondary capitalize">
{doc.category || 'invoice'}
</td>
<td className="py-4 px-4 text-sm text-warm-text-muted">
{doc.group_key || '-'}
</td>
<td className="py-4 px-4">
{doc.auto_label_status === 'running' && progress && (
<div className="w-full">
<div className="flex justify-between text-xs mb-1">
<span className="text-warm-text-secondary font-medium">
Running
</span>
<span className="text-warm-text-muted">{progress}%</span>
</div>
<div className="h-1.5 w-full bg-warm-selected rounded-full overflow-hidden">
<div
className="h-full bg-warm-state-info transition-all duration-500 ease-out"
style={{ width: `${progress}%` }}
/>
</div>
</div>
)}
{doc.auto_label_status === 'completed' && (
<span className="text-sm font-medium text-warm-state-success">
Completed
</span>
)}
{doc.auto_label_status === 'failed' && (
<span className="text-sm font-medium text-warm-state-error">
Failed
</span>
)}
</td>
<td className="py-4 px-4 text-right">
<button className="text-warm-text-muted hover:text-warm-text-secondary p-1 rounded hover:bg-black/5 transition-colors">
<MoreHorizontal size={18} />
</button>
</td>
</tr>
)
})
)}
</tbody>
</table>
</div>
<UploadModal
isOpen={isUploadOpen}
onClose={() => {
setIsUploadOpen(false)
refetch()
}}
/>
</div>
)
}

View File

@@ -0,0 +1,148 @@
import React from 'react'
import { FileText, CheckCircle, Clock, TrendingUp, Activity } from 'lucide-react'
import { Button } from './Button'
import { useDocuments } from '../hooks/useDocuments'
import { useTraining } from '../hooks/useTraining'
interface DashboardOverviewProps {
onNavigate: (view: string) => void
}
export const DashboardOverview: React.FC<DashboardOverviewProps> = ({ onNavigate }) => {
const { total: totalDocs, isLoading: docsLoading } = useDocuments({ limit: 1 })
const { models, isLoadingModels } = useTraining()
const stats = [
{
label: 'Total Documents',
value: docsLoading ? '...' : totalDocs.toString(),
icon: FileText,
color: 'text-warm-text-primary',
bgColor: 'bg-warm-bg',
},
{
label: 'Labeled',
value: '0',
icon: CheckCircle,
color: 'text-warm-state-success',
bgColor: 'bg-green-50',
},
{
label: 'Pending',
value: '0',
icon: Clock,
color: 'text-warm-state-warning',
bgColor: 'bg-yellow-50',
},
{
label: 'Training Models',
value: isLoadingModels ? '...' : models.length.toString(),
icon: TrendingUp,
color: 'text-warm-state-info',
bgColor: 'bg-blue-50',
},
]
return (
<div className="p-8 max-w-7xl mx-auto animate-fade-in">
{/* Header */}
<div className="mb-8">
<h1 className="text-3xl font-bold text-warm-text-primary tracking-tight">
Dashboard
</h1>
<p className="text-sm text-warm-text-muted mt-1">
Overview of your document annotation system
</p>
</div>
{/* Stats Grid */}
<div className="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-4 gap-6 mb-8">
{stats.map((stat) => (
<div
key={stat.label}
className="bg-warm-card border border-warm-border rounded-lg p-6 shadow-sm hover:shadow-md transition-shadow"
>
<div className="flex items-center justify-between mb-4">
<div className={`p-3 rounded-lg ${stat.bgColor}`}>
<stat.icon className={stat.color} size={24} />
</div>
</div>
<p className="text-2xl font-bold text-warm-text-primary mb-1">
{stat.value}
</p>
<p className="text-sm text-warm-text-muted">{stat.label}</p>
</div>
))}
</div>
{/* Quick Actions */}
<div className="bg-warm-card border border-warm-border rounded-lg p-6 shadow-sm mb-8">
<h2 className="text-lg font-semibold text-warm-text-primary mb-4">
Quick Actions
</h2>
<div className="grid grid-cols-1 md:grid-cols-3 gap-4">
<Button onClick={() => onNavigate('documents')} className="justify-start">
<FileText size={18} className="mr-2" />
Manage Documents
</Button>
<Button onClick={() => onNavigate('training')} variant="secondary" className="justify-start">
<Activity size={18} className="mr-2" />
Start Training
</Button>
<Button onClick={() => onNavigate('models')} variant="secondary" className="justify-start">
<TrendingUp size={18} className="mr-2" />
View Models
</Button>
</div>
</div>
{/* Recent Activity */}
<div className="bg-warm-card border border-warm-border rounded-lg shadow-sm overflow-hidden">
<div className="p-6 border-b border-warm-border">
<h2 className="text-lg font-semibold text-warm-text-primary">
Recent Activity
</h2>
</div>
<div className="p-6">
<div className="text-center py-8 text-warm-text-muted">
<Activity size={48} className="mx-auto mb-3 opacity-20" />
<p className="text-sm">No recent activity</p>
<p className="text-xs mt-1">
Start by uploading documents or creating training jobs
</p>
</div>
</div>
</div>
{/* System Status */}
<div className="mt-8 bg-warm-card border border-warm-border rounded-lg p-6 shadow-sm">
<h2 className="text-lg font-semibold text-warm-text-primary mb-4">
System Status
</h2>
<div className="space-y-3">
<div className="flex items-center justify-between">
<span className="text-sm text-warm-text-secondary">Backend API</span>
<span className="flex items-center text-sm text-warm-state-success">
<span className="w-2 h-2 bg-green-500 rounded-full mr-2"></span>
Online
</span>
</div>
<div className="flex items-center justify-between">
<span className="text-sm text-warm-text-secondary">Database</span>
<span className="flex items-center text-sm text-warm-state-success">
<span className="w-2 h-2 bg-green-500 rounded-full mr-2"></span>
Connected
</span>
</div>
<div className="flex items-center justify-between">
<span className="text-sm text-warm-text-secondary">GPU</span>
<span className="flex items-center text-sm text-warm-state-success">
<span className="w-2 h-2 bg-green-500 rounded-full mr-2"></span>
Available
</span>
</div>
</div>
</div>
</div>
)
}

View File

@@ -0,0 +1,176 @@
import React from 'react'
import { ArrowLeft, Loader2, Play, AlertCircle, Check, Award } from 'lucide-react'
import { Button } from './Button'
import { useDatasetDetail } from '../hooks/useDatasets'
interface DatasetDetailProps {
datasetId: string
onBack: () => void
}
const SPLIT_STYLES: Record<string, string> = {
train: 'bg-warm-state-info/10 text-warm-state-info',
val: 'bg-warm-state-warning/10 text-warm-state-warning',
test: 'bg-warm-state-success/10 text-warm-state-success',
}
const STATUS_STYLES: Record<string, { bg: string; text: string; label: string }> = {
building: { bg: 'bg-warm-state-info/10', text: 'text-warm-state-info', label: 'Building' },
ready: { bg: 'bg-warm-state-success/10', text: 'text-warm-state-success', label: 'Ready' },
trained: { bg: 'bg-purple-100', text: 'text-purple-700', label: 'Trained' },
failed: { bg: 'bg-warm-state-error/10', text: 'text-warm-state-error', label: 'Failed' },
archived: { bg: 'bg-warm-border', text: 'text-warm-text-muted', label: 'Archived' },
}
const TRAINING_STATUS_STYLES: Record<string, { bg: string; text: string; label: string }> = {
pending: { bg: 'bg-warm-state-warning/10', text: 'text-warm-state-warning', label: 'Pending' },
scheduled: { bg: 'bg-warm-state-warning/10', text: 'text-warm-state-warning', label: 'Scheduled' },
running: { bg: 'bg-warm-state-info/10', text: 'text-warm-state-info', label: 'Training' },
completed: { bg: 'bg-warm-state-success/10', text: 'text-warm-state-success', label: 'Completed' },
failed: { bg: 'bg-warm-state-error/10', text: 'text-warm-state-error', label: 'Failed' },
cancelled: { bg: 'bg-warm-border', text: 'text-warm-text-muted', label: 'Cancelled' },
}
export const DatasetDetail: React.FC<DatasetDetailProps> = ({ datasetId, onBack }) => {
const { dataset, isLoading, error } = useDatasetDetail(datasetId)
if (isLoading) {
return (
<div className="flex items-center justify-center py-20 text-warm-text-muted">
<Loader2 size={24} className="animate-spin mr-2" />Loading dataset...
</div>
)
}
if (error || !dataset) {
return (
<div className="p-8 max-w-7xl mx-auto">
<button onClick={onBack} className="flex items-center gap-1 text-sm text-warm-text-muted hover:text-warm-text-secondary mb-4">
<ArrowLeft size={16} />Back
</button>
<p className="text-warm-state-error">Failed to load dataset.</p>
</div>
)
}
const statusConfig = STATUS_STYLES[dataset.status] || STATUS_STYLES.ready
const trainingStatusConfig = dataset.training_status
? TRAINING_STATUS_STYLES[dataset.training_status]
: null
// Determine if training button should be shown and enabled
const isTrainingInProgress = dataset.training_status === 'running' || dataset.training_status === 'pending'
const canStartTraining = dataset.status === 'ready' && !isTrainingInProgress
// Determine status icon
const statusIcon = dataset.status === 'trained'
? <Award size={14} className="text-purple-700" />
: dataset.status === 'ready'
? <Check size={14} className="text-warm-state-success" />
: dataset.status === 'failed'
? <AlertCircle size={14} className="text-warm-state-error" />
: dataset.status === 'building'
? <Loader2 size={14} className="animate-spin text-warm-state-info" />
: null
return (
<div className="p-8 max-w-7xl mx-auto">
{/* Header */}
<button onClick={onBack} className="flex items-center gap-1 text-sm text-warm-text-muted hover:text-warm-text-secondary mb-4">
<ArrowLeft size={16} />Back to Datasets
</button>
<div className="flex items-center justify-between mb-6">
<div>
<div className="flex items-center gap-3 mb-1">
<h2 className="text-2xl font-bold text-warm-text-primary flex items-center gap-2">
{dataset.name} {statusIcon}
</h2>
{/* Status Badge */}
<span className={`inline-flex items-center px-2.5 py-1 rounded-full text-xs font-medium ${statusConfig.bg} ${statusConfig.text}`}>
{statusConfig.label}
</span>
{/* Training Status Badge */}
{trainingStatusConfig && (
<span className={`inline-flex items-center px-2.5 py-1 rounded-full text-xs font-medium ${trainingStatusConfig.bg} ${trainingStatusConfig.text}`}>
{isTrainingInProgress && <Loader2 size={12} className="mr-1 animate-spin" />}
{trainingStatusConfig.label}
</span>
)}
</div>
{dataset.description && (
<p className="text-sm text-warm-text-muted mt-1">{dataset.description}</p>
)}
</div>
{/* Training Button */}
{(dataset.status === 'ready' || dataset.status === 'trained') && (
<Button
disabled={isTrainingInProgress}
className={isTrainingInProgress ? 'opacity-50 cursor-not-allowed' : ''}
>
{isTrainingInProgress ? (
<><Loader2 size={14} className="mr-1 animate-spin" />Training...</>
) : (
<><Play size={14} className="mr-1" />Start Training</>
)}
</Button>
)}
</div>
{dataset.error_message && (
<div className="bg-warm-state-error/10 border border-warm-state-error/20 rounded-lg p-4 mb-6 text-sm text-warm-state-error">
{dataset.error_message}
</div>
)}
{/* Stats */}
<div className="grid grid-cols-4 gap-4 mb-8">
{[
['Documents', dataset.total_documents],
['Images', dataset.total_images],
['Annotations', dataset.total_annotations],
['Split', `${(dataset.train_ratio * 100).toFixed(0)}/${(dataset.val_ratio * 100).toFixed(0)}/${((1 - dataset.train_ratio - dataset.val_ratio) * 100).toFixed(0)}`],
].map(([label, value]) => (
<div key={String(label)} className="bg-warm-card border border-warm-border rounded-lg p-4">
<p className="text-xs text-warm-text-muted uppercase font-semibold mb-1">{label}</p>
<p className="text-2xl font-bold text-warm-text-primary font-mono">{value}</p>
</div>
))}
</div>
{/* Document list */}
<h3 className="text-lg font-semibold text-warm-text-primary mb-4">Documents</h3>
<div className="bg-warm-card border border-warm-border rounded-lg overflow-hidden shadow-sm">
<table className="w-full text-left">
<thead className="bg-white border-b border-warm-border">
<tr>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Document ID</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Split</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Pages</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Annotations</th>
</tr>
</thead>
<tbody>
{dataset.documents.map(doc => (
<tr key={doc.document_id} className="border-b border-warm-border hover:bg-warm-hover transition-colors">
<td className="py-3 px-4 text-sm font-mono text-warm-text-secondary">{doc.document_id.slice(0, 8)}...</td>
<td className="py-3 px-4">
<span className={`inline-flex px-2.5 py-1 rounded-full text-xs font-medium ${SPLIT_STYLES[doc.split] ?? 'bg-warm-border text-warm-text-muted'}`}>
{doc.split}
</span>
</td>
<td className="py-3 px-4 text-sm text-warm-text-muted font-mono">{doc.page_count}</td>
<td className="py-3 px-4 text-sm text-warm-text-muted font-mono">{doc.annotation_count}</td>
</tr>
))}
</tbody>
</table>
</div>
<p className="text-xs text-warm-text-muted mt-4">
Created: {new Date(dataset.created_at).toLocaleString()} | Updated: {new Date(dataset.updated_at).toLocaleString()}
{dataset.dataset_path && <> | Path: <code className="text-xs">{dataset.dataset_path}</code></>}
</p>
</div>
)
}

View File

@@ -0,0 +1,567 @@
import React, { useState, useRef, useEffect } from 'react'
import { ChevronLeft, ZoomIn, ZoomOut, Plus, Edit2, Trash2, Tag, CheckCircle, Check, X } from 'lucide-react'
import { Button } from './Button'
import { useDocumentDetail } from '../hooks/useDocumentDetail'
import { useAnnotations } from '../hooks/useAnnotations'
import { useDocuments } from '../hooks/useDocuments'
import { documentsApi } from '../api/endpoints/documents'
import type { AnnotationItem } from '../api/types'
interface DocumentDetailProps {
docId: string
onBack: () => void
}
// Field class mapping from backend
const FIELD_CLASSES: Record<number, string> = {
0: 'invoice_number',
1: 'invoice_date',
2: 'invoice_due_date',
3: 'ocr_number',
4: 'bankgiro',
5: 'plusgiro',
6: 'amount',
7: 'supplier_organisation_number',
8: 'payment_line',
9: 'customer_number',
}
export const DocumentDetail: React.FC<DocumentDetailProps> = ({ docId, onBack }) => {
const { document, annotations, isLoading, refetch } = useDocumentDetail(docId)
const {
createAnnotation,
updateAnnotation,
deleteAnnotation,
isCreating,
isDeleting,
} = useAnnotations(docId)
const { updateGroupKey, isUpdatingGroupKey } = useDocuments({})
const [selectedId, setSelectedId] = useState<string | null>(null)
const [zoom, setZoom] = useState(100)
const [isDrawing, setIsDrawing] = useState(false)
const [isEditingGroupKey, setIsEditingGroupKey] = useState(false)
const [editGroupKeyValue, setEditGroupKeyValue] = useState('')
const [drawStart, setDrawStart] = useState<{ x: number; y: number } | null>(null)
const [drawEnd, setDrawEnd] = useState<{ x: number; y: number } | null>(null)
const [selectedClassId, setSelectedClassId] = useState<number>(0)
const [currentPage, setCurrentPage] = useState(1)
const [imageSize, setImageSize] = useState<{ width: number; height: number } | null>(null)
const [imageBlobUrl, setImageBlobUrl] = useState<string | null>(null)
const canvasRef = useRef<HTMLDivElement>(null)
const imageRef = useRef<HTMLImageElement>(null)
const [isMarkingComplete, setIsMarkingComplete] = useState(false)
const selectedAnnotation = annotations?.find((a) => a.annotation_id === selectedId)
// Handle mark as complete
const handleMarkComplete = async () => {
if (!annotations || annotations.length === 0) {
alert('Please add at least one annotation before marking as complete.')
return
}
if (!confirm('Mark this document as labeled? This will save annotations to the database.')) {
return
}
setIsMarkingComplete(true)
try {
const result = await documentsApi.updateStatus(docId, 'labeled')
alert(`Document marked as labeled. ${(result as any).fields_saved || annotations.length} annotations saved.`)
onBack() // Return to document list
} catch (error) {
console.error('Failed to mark document as complete:', error)
alert('Failed to mark document as complete. Please try again.')
} finally {
setIsMarkingComplete(false)
}
}
// Load image via fetch with authentication header
useEffect(() => {
let objectUrl: string | null = null
const loadImage = async () => {
if (!docId) return
const token = localStorage.getItem('admin_token')
const imageUrl = `${import.meta.env.VITE_API_URL || 'http://localhost:8000'}/api/v1/admin/documents/${docId}/images/${currentPage}`
try {
const response = await fetch(imageUrl, {
headers: {
'X-Admin-Token': token || '',
},
})
if (!response.ok) {
throw new Error(`Failed to load image: ${response.status}`)
}
const blob = await response.blob()
objectUrl = URL.createObjectURL(blob)
setImageBlobUrl(objectUrl)
} catch (error) {
console.error('Failed to load image:', error)
}
}
loadImage()
// Cleanup: revoke object URL when component unmounts or page changes
return () => {
if (objectUrl) {
URL.revokeObjectURL(objectUrl)
}
}
}, [currentPage, docId])
// Load image size
useEffect(() => {
if (imageRef.current && imageRef.current.complete) {
setImageSize({
width: imageRef.current.naturalWidth,
height: imageRef.current.naturalHeight,
})
}
}, [imageBlobUrl])
const handleImageLoad = () => {
if (imageRef.current) {
setImageSize({
width: imageRef.current.naturalWidth,
height: imageRef.current.naturalHeight,
})
}
}
const handleMouseDown = (e: React.MouseEvent<HTMLDivElement>) => {
if (!canvasRef.current || !imageSize) return
const rect = canvasRef.current.getBoundingClientRect()
const x = (e.clientX - rect.left) / (zoom / 100)
const y = (e.clientY - rect.top) / (zoom / 100)
setIsDrawing(true)
setDrawStart({ x, y })
setDrawEnd({ x, y })
}
const handleMouseMove = (e: React.MouseEvent<HTMLDivElement>) => {
if (!isDrawing || !canvasRef.current || !imageSize) return
const rect = canvasRef.current.getBoundingClientRect()
const x = (e.clientX - rect.left) / (zoom / 100)
const y = (e.clientY - rect.top) / (zoom / 100)
setDrawEnd({ x, y })
}
const handleMouseUp = () => {
if (!isDrawing || !drawStart || !drawEnd || !imageSize) {
setIsDrawing(false)
return
}
const bbox_x = Math.min(drawStart.x, drawEnd.x)
const bbox_y = Math.min(drawStart.y, drawEnd.y)
const bbox_width = Math.abs(drawEnd.x - drawStart.x)
const bbox_height = Math.abs(drawEnd.y - drawStart.y)
// Only create if box is large enough (min 10x10 pixels)
if (bbox_width > 10 && bbox_height > 10) {
createAnnotation({
page_number: currentPage,
class_id: selectedClassId,
bbox: {
x: Math.round(bbox_x),
y: Math.round(bbox_y),
width: Math.round(bbox_width),
height: Math.round(bbox_height),
},
})
}
setIsDrawing(false)
setDrawStart(null)
setDrawEnd(null)
}
const handleDeleteAnnotation = (annotationId: string) => {
if (confirm('Are you sure you want to delete this annotation?')) {
deleteAnnotation(annotationId)
setSelectedId(null)
}
}
if (isLoading || !document) {
return (
<div className="flex h-screen items-center justify-center">
<div className="text-warm-text-muted">Loading...</div>
</div>
)
}
// Get current page annotations
const pageAnnotations = annotations?.filter((a) => a.page_number === currentPage) || []
return (
<div className="flex h-[calc(100vh-56px)] overflow-hidden">
{/* Main Canvas Area */}
<div className="flex-1 bg-warm-bg flex flex-col relative">
{/* Toolbar */}
<div className="h-14 border-b border-warm-border bg-white flex items-center justify-between px-4 z-10">
<div className="flex items-center gap-4">
<button
onClick={onBack}
className="p-2 hover:bg-warm-hover rounded-md text-warm-text-secondary transition-colors"
>
<ChevronLeft size={20} />
</button>
<div>
<h2 className="text-sm font-semibold text-warm-text-primary">{document.filename}</h2>
<p className="text-xs text-warm-text-muted">
Page {currentPage} of {document.page_count}
</p>
</div>
<div className="h-6 w-px bg-warm-divider mx-2" />
<div className="flex items-center gap-2">
<button
className="p-1.5 hover:bg-warm-hover rounded text-warm-text-secondary"
onClick={() => setZoom((z) => Math.max(50, z - 10))}
>
<ZoomOut size={16} />
</button>
<span className="text-xs font-mono w-12 text-center text-warm-text-secondary">
{zoom}%
</span>
<button
className="p-1.5 hover:bg-warm-hover rounded text-warm-text-secondary"
onClick={() => setZoom((z) => Math.min(200, z + 10))}
>
<ZoomIn size={16} />
</button>
</div>
</div>
<div className="flex gap-2">
<Button variant="secondary" size="sm">
Auto-label
</Button>
<Button
variant="primary"
size="sm"
onClick={handleMarkComplete}
disabled={isMarkingComplete || document.status === 'labeled'}
>
<CheckCircle size={16} className="mr-1" />
{isMarkingComplete ? 'Saving...' : document.status === 'labeled' ? 'Labeled' : 'Mark Complete'}
</Button>
{document.page_count > 1 && (
<div className="flex gap-1">
<Button
variant="secondary"
size="sm"
onClick={() => setCurrentPage((p) => Math.max(1, p - 1))}
disabled={currentPage === 1}
>
Prev
</Button>
<Button
variant="secondary"
size="sm"
onClick={() => setCurrentPage((p) => Math.min(document.page_count, p + 1))}
disabled={currentPage === document.page_count}
>
Next
</Button>
</div>
)}
</div>
</div>
{/* Canvas Scroll Area */}
<div className="flex-1 overflow-auto p-8 flex justify-center bg-warm-bg">
<div
ref={canvasRef}
className="bg-white shadow-lg relative transition-transform duration-200 ease-out origin-top"
style={{
width: imageSize?.width || 800,
height: imageSize?.height || 1132,
transform: `scale(${zoom / 100})`,
marginBottom: '100px',
cursor: isDrawing ? 'crosshair' : 'default',
}}
onMouseDown={handleMouseDown}
onMouseMove={handleMouseMove}
onMouseUp={handleMouseUp}
onClick={() => setSelectedId(null)}
>
{/* Document Image */}
{imageBlobUrl ? (
<img
ref={imageRef}
src={imageBlobUrl}
alt={`Page ${currentPage}`}
className="w-full h-full object-contain select-none pointer-events-none"
onLoad={handleImageLoad}
/>
) : (
<div className="flex items-center justify-center h-full">
<div className="text-warm-text-muted">Loading image...</div>
</div>
)}
{/* Annotation Overlays */}
{pageAnnotations.map((ann) => {
const isSelected = selectedId === ann.annotation_id
return (
<div
key={ann.annotation_id}
onClick={(e) => {
e.stopPropagation()
setSelectedId(ann.annotation_id)
}}
className={`
absolute group cursor-pointer transition-all duration-100
${
ann.source === 'auto'
? 'border border-dashed border-warm-text-muted bg-transparent'
: 'border-2 border-warm-text-secondary bg-warm-text-secondary/5'
}
${
isSelected
? 'border-2 border-warm-state-info ring-4 ring-warm-state-info/10 z-20'
: 'hover:bg-warm-state-info/5 z-10'
}
`}
style={{
left: ann.bbox.x,
top: ann.bbox.y,
width: ann.bbox.width,
height: ann.bbox.height,
}}
>
{/* Label Tag */}
<div
className={`
absolute -top-6 left-0 text-[10px] uppercase font-bold px-1.5 py-0.5 rounded-sm tracking-wide shadow-sm whitespace-nowrap
${
isSelected
? 'bg-warm-state-info text-white'
: 'bg-white text-warm-text-secondary border border-warm-border'
}
`}
>
{ann.class_name}
</div>
{/* Resize Handles (Visual only) */}
{isSelected && (
<>
<div className="absolute -top-1 -left-1 w-2 h-2 bg-white border border-warm-state-info rounded-full" />
<div className="absolute -top-1 -right-1 w-2 h-2 bg-white border border-warm-state-info rounded-full" />
<div className="absolute -bottom-1 -left-1 w-2 h-2 bg-white border border-warm-state-info rounded-full" />
<div className="absolute -bottom-1 -right-1 w-2 h-2 bg-white border border-warm-state-info rounded-full" />
</>
)}
</div>
)
})}
{/* Drawing Box Preview */}
{isDrawing && drawStart && drawEnd && (
<div
className="absolute border-2 border-warm-state-info bg-warm-state-info/10 z-30 pointer-events-none"
style={{
left: Math.min(drawStart.x, drawEnd.x),
top: Math.min(drawStart.y, drawEnd.y),
width: Math.abs(drawEnd.x - drawStart.x),
height: Math.abs(drawEnd.y - drawStart.y),
}}
/>
)}
</div>
</div>
</div>
{/* Right Sidebar */}
<div className="w-80 bg-white border-l border-warm-border flex flex-col shadow-[-4px_0_15px_-3px_rgba(0,0,0,0.03)] z-20">
{/* Field Selector */}
<div className="p-4 border-b border-warm-border">
<h3 className="text-sm font-semibold text-warm-text-primary mb-3">Draw Annotation</h3>
<div className="space-y-2">
<label className="block text-xs text-warm-text-muted mb-1">Select Field Type</label>
<select
value={selectedClassId}
onChange={(e) => setSelectedClassId(Number(e.target.value))}
className="w-full px-3 py-2 border border-warm-border rounded-md text-sm focus:outline-none focus:ring-1 focus:ring-warm-state-info"
>
{Object.entries(FIELD_CLASSES).map(([id, name]) => (
<option key={id} value={id}>
{name.replace(/_/g, ' ')}
</option>
))}
</select>
<p className="text-xs text-warm-text-muted mt-2">
Click and drag on the document to create a bounding box
</p>
</div>
</div>
{/* Document Info Card */}
<div className="p-4 border-b border-warm-border">
<div className="bg-white rounded-lg border border-warm-border p-4 shadow-sm">
<h3 className="text-sm font-semibold text-warm-text-primary mb-3">Document Info</h3>
<div className="space-y-2">
<div className="flex justify-between text-xs">
<span className="text-warm-text-muted">Status</span>
<span className="text-warm-text-secondary font-medium capitalize">
{document.status}
</span>
</div>
<div className="flex justify-between text-xs">
<span className="text-warm-text-muted">Size</span>
<span className="text-warm-text-secondary font-medium">
{(document.file_size / 1024 / 1024).toFixed(2)} MB
</span>
</div>
<div className="flex justify-between text-xs">
<span className="text-warm-text-muted">Uploaded</span>
<span className="text-warm-text-secondary font-medium">
{new Date(document.created_at).toLocaleDateString()}
</span>
</div>
<div className="flex justify-between items-center text-xs">
<span className="text-warm-text-muted">Group</span>
{isEditingGroupKey ? (
<div className="flex items-center gap-1">
<input
type="text"
value={editGroupKeyValue}
onChange={(e) => setEditGroupKeyValue(e.target.value)}
className="w-24 px-1.5 py-0.5 text-xs border border-warm-border rounded focus:outline-none focus:ring-1 focus:ring-warm-state-info"
placeholder="group key"
autoFocus
/>
<button
onClick={() => {
updateGroupKey(
{ documentId: docId, groupKey: editGroupKeyValue.trim() || null },
{
onSuccess: () => {
setIsEditingGroupKey(false)
refetch()
},
onError: () => {
alert('Failed to update group key. Please try again.')
},
}
)
}}
disabled={isUpdatingGroupKey}
className="p-0.5 text-warm-state-success hover:bg-warm-hover rounded"
>
<Check size={14} />
</button>
<button
onClick={() => {
setIsEditingGroupKey(false)
setEditGroupKeyValue(document.group_key || '')
}}
className="p-0.5 text-warm-state-error hover:bg-warm-hover rounded"
>
<X size={14} />
</button>
</div>
) : (
<div className="flex items-center gap-1">
<span className="text-warm-text-secondary font-medium">
{document.group_key || '-'}
</span>
<button
onClick={() => {
setEditGroupKeyValue(document.group_key || '')
setIsEditingGroupKey(true)
}}
className="p-0.5 text-warm-text-muted hover:text-warm-text-secondary hover:bg-warm-hover rounded"
>
<Edit2 size={12} />
</button>
</div>
)}
</div>
</div>
</div>
</div>
{/* Annotations List */}
<div className="flex-1 overflow-y-auto p-4">
<div className="flex items-center justify-between mb-4">
<h3 className="text-sm font-semibold text-warm-text-primary">Annotations</h3>
<span className="text-xs text-warm-text-muted">{pageAnnotations.length} items</span>
</div>
{pageAnnotations.length === 0 ? (
<div className="text-center py-8 text-warm-text-muted">
<Tag size={48} className="mx-auto mb-3 opacity-20" />
<p className="text-sm">No annotations yet</p>
<p className="text-xs mt-1">Draw on the document to add annotations</p>
</div>
) : (
<div className="space-y-3">
{pageAnnotations.map((ann) => (
<div
key={ann.annotation_id}
onClick={() => setSelectedId(ann.annotation_id)}
className={`
group p-3 rounded-md border transition-all duration-150 cursor-pointer
${
selectedId === ann.annotation_id
? 'bg-warm-bg border-warm-state-info shadow-sm'
: 'bg-white border-warm-border hover:border-warm-text-muted'
}
`}
>
<div className="flex justify-between items-start mb-1">
<span className="text-xs font-bold text-warm-text-secondary uppercase tracking-wider">
{ann.class_name.replace(/_/g, ' ')}
</span>
{selectedId === ann.annotation_id && (
<div className="flex gap-1">
<button
onClick={() => handleDeleteAnnotation(ann.annotation_id)}
className="text-warm-text-muted hover:text-warm-state-error"
disabled={isDeleting}
>
<Trash2 size={12} />
</button>
</div>
)}
</div>
<p className="text-sm text-warm-text-muted font-mono truncate">
{ann.text_value || '(no text)'}
</p>
<div className="flex items-center gap-2 mt-2">
<span
className={`text-[10px] px-1.5 py-0.5 rounded ${
ann.source === 'auto'
? 'bg-blue-50 text-blue-700'
: 'bg-green-50 text-green-700'
}`}
>
{ann.source}
</span>
{ann.confidence && (
<span className="text-[10px] text-warm-text-muted">
{(ann.confidence * 100).toFixed(0)}%
</span>
)}
</div>
</div>
))}
</div>
)}
</div>
</div>
</div>
)
}

View File

@@ -0,0 +1,466 @@
import React, { useState, useRef } from 'react'
import { UploadCloud, FileText, Loader2, CheckCircle2, AlertCircle, Clock } from 'lucide-react'
import { Button } from './Button'
import { inferenceApi } from '../api/endpoints'
import type { InferenceResult } from '../api/types'
export const InferenceDemo: React.FC = () => {
const [isDragging, setIsDragging] = useState(false)
const [selectedFile, setSelectedFile] = useState<File | null>(null)
const [isProcessing, setIsProcessing] = useState(false)
const [result, setResult] = useState<InferenceResult | null>(null)
const [error, setError] = useState<string | null>(null)
const fileInputRef = useRef<HTMLInputElement>(null)
const handleFileSelect = (file: File | null) => {
if (!file) return
const validTypes = ['application/pdf', 'image/png', 'image/jpeg', 'image/jpg']
if (!validTypes.includes(file.type)) {
setError('Please upload a PDF, PNG, or JPG file')
return
}
if (file.size > 50 * 1024 * 1024) {
setError('File size must be less than 50MB')
return
}
setSelectedFile(file)
setResult(null)
setError(null)
}
const handleDrop = (e: React.DragEvent) => {
e.preventDefault()
setIsDragging(false)
if (e.dataTransfer.files.length > 0) {
handleFileSelect(e.dataTransfer.files[0])
}
}
const handleBrowseClick = () => {
fileInputRef.current?.click()
}
const handleProcess = async () => {
if (!selectedFile) return
setIsProcessing(true)
setError(null)
try {
const response = await inferenceApi.processDocument(selectedFile)
console.log('API Response:', response)
console.log('Visualization URL:', response.result?.visualization_url)
setResult(response.result)
} catch (err) {
setError(err instanceof Error ? err.message : 'Processing failed')
} finally {
setIsProcessing(false)
}
}
const handleReset = () => {
setSelectedFile(null)
setResult(null)
setError(null)
}
const formatFieldName = (field: string): string => {
const fieldNames: Record<string, string> = {
InvoiceNumber: 'Invoice Number',
InvoiceDate: 'Invoice Date',
InvoiceDueDate: 'Due Date',
OCR: 'OCR Number',
Amount: 'Amount',
Bankgiro: 'Bankgiro',
Plusgiro: 'Plusgiro',
supplier_org_number: 'Supplier Org Number',
customer_number: 'Customer Number',
payment_line: 'Payment Line',
}
return fieldNames[field] || field
}
return (
<div className="max-w-7xl mx-auto px-4 py-6 space-y-6">
{/* Header */}
<div className="text-center">
<h2 className="text-3xl font-bold text-warm-text-primary mb-2">
Invoice Extraction Demo
</h2>
<p className="text-warm-text-muted">
Upload a Swedish invoice to see our AI-powered field extraction in action
</p>
</div>
{/* Upload Area */}
{!result && (
<div className="max-w-2xl mx-auto">
<div className="bg-warm-card rounded-xl border border-warm-border p-8 shadow-sm">
<div
className={`
relative h-72 rounded-xl border-2 border-dashed transition-all duration-200
${isDragging
? 'border-warm-text-secondary bg-warm-selected scale-[1.02]'
: 'border-warm-divider bg-warm-bg hover:bg-warm-hover hover:border-warm-text-secondary/50'
}
${isProcessing ? 'opacity-60 pointer-events-none' : 'cursor-pointer'}
`}
onDragOver={(e) => {
e.preventDefault()
setIsDragging(true)
}}
onDragLeave={() => setIsDragging(false)}
onDrop={handleDrop}
onClick={handleBrowseClick}
>
<div className="absolute inset-0 flex flex-col items-center justify-center gap-6">
{isProcessing ? (
<>
<Loader2 size={56} className="text-warm-text-secondary animate-spin" />
<div className="text-center">
<p className="text-lg font-semibold text-warm-text-primary mb-1">
Processing invoice...
</p>
<p className="text-sm text-warm-text-muted">
This may take a few moments
</p>
</div>
</>
) : selectedFile ? (
<>
<div className="p-5 bg-warm-text-secondary/10 rounded-full">
<FileText size={40} className="text-warm-text-secondary" />
</div>
<div className="text-center px-4">
<p className="text-lg font-semibold text-warm-text-primary mb-1">
{selectedFile.name}
</p>
<p className="text-sm text-warm-text-muted">
{(selectedFile.size / 1024 / 1024).toFixed(2)} MB
</p>
</div>
</>
) : (
<>
<div className="p-5 bg-warm-text-secondary/10 rounded-full">
<UploadCloud size={40} className="text-warm-text-secondary" />
</div>
<div className="text-center px-4">
<p className="text-lg font-semibold text-warm-text-primary mb-2">
Drag & drop invoice here
</p>
<p className="text-sm text-warm-text-muted mb-3">
or{' '}
<span className="text-warm-text-secondary font-medium">
browse files
</span>
</p>
<p className="text-xs text-warm-text-muted">
Supports PDF, PNG, JPG (up to 50MB)
</p>
</div>
</>
)}
</div>
</div>
<input
ref={fileInputRef}
type="file"
accept=".pdf,image/*"
className="hidden"
onChange={(e) => handleFileSelect(e.target.files?.[0] || null)}
/>
{error && (
<div className="mt-5 p-4 bg-red-50 border border-red-200 rounded-lg flex items-start gap-3">
<AlertCircle size={18} className="text-red-600 flex-shrink-0 mt-0.5" />
<span className="text-sm text-red-800 font-medium">{error}</span>
</div>
)}
{selectedFile && !isProcessing && (
<div className="mt-6 flex gap-3 justify-end">
<Button variant="secondary" onClick={handleReset}>
Cancel
</Button>
<Button onClick={handleProcess}>Process Invoice</Button>
</div>
)}
</div>
</div>
)}
{/* Results */}
{result && (
<div className="space-y-6">
{/* Status Header */}
<div className="bg-warm-card rounded-xl border border-warm-border shadow-sm overflow-hidden">
<div className="p-6 flex items-center justify-between border-b border-warm-divider">
<div className="flex items-center gap-4">
{result.success ? (
<div className="p-3 bg-green-100 rounded-xl">
<CheckCircle2 size={28} className="text-green-600" />
</div>
) : (
<div className="p-3 bg-yellow-100 rounded-xl">
<AlertCircle size={28} className="text-yellow-600" />
</div>
)}
<div>
<h3 className="text-xl font-bold text-warm-text-primary">
{result.success ? 'Extraction Complete' : 'Partial Results'}
</h3>
<p className="text-sm text-warm-text-muted mt-0.5">
Document ID: <span className="font-mono">{result.document_id}</span>
</p>
</div>
</div>
<Button variant="secondary" onClick={handleReset}>
Process Another
</Button>
</div>
<div className="px-6 py-4 bg-warm-bg/50 flex items-center gap-6 text-sm">
<div className="flex items-center gap-2 text-warm-text-secondary">
<Clock size={16} />
<span className="font-medium">
{result.processing_time_ms.toFixed(0)}ms
</span>
</div>
{result.fallback_used && (
<span className="px-3 py-1.5 bg-warm-selected rounded-md text-warm-text-secondary font-medium text-xs">
Fallback OCR Used
</span>
)}
</div>
</div>
{/* Main Content Grid */}
<div className="grid grid-cols-1 lg:grid-cols-3 gap-6">
{/* Left Column: Extracted Fields */}
<div className="lg:col-span-2 space-y-6">
<div className="bg-warm-card rounded-xl border border-warm-border p-6 shadow-sm">
<h3 className="text-lg font-bold text-warm-text-primary mb-5 flex items-center gap-2">
<span className="w-1 h-5 bg-warm-text-secondary rounded-full"></span>
Extracted Fields
</h3>
<div className="flex flex-wrap gap-4">
{Object.entries(result.fields).map(([field, value]) => {
const confidence = result.confidence[field]
return (
<div
key={field}
className="p-4 bg-warm-bg/70 rounded-lg border border-warm-divider hover:border-warm-text-secondary/30 transition-colors w-[calc(50%-0.5rem)]"
>
<div className="text-xs font-semibold text-warm-text-muted uppercase tracking-wide mb-2">
{formatFieldName(field)}
</div>
<div className="text-sm font-bold text-warm-text-primary mb-2 min-h-[1.5rem]">
{value || <span className="text-warm-text-muted italic">N/A</span>}
</div>
{confidence && (
<div className="flex items-center gap-1.5 text-xs font-medium text-warm-text-secondary">
<CheckCircle2 size={13} />
<span>{(confidence * 100).toFixed(1)}%</span>
</div>
)}
</div>
)
})}
</div>
</div>
{/* Visualization */}
{result.visualization_url && (
<div className="bg-warm-card rounded-xl border border-warm-border p-6 shadow-sm">
<h3 className="text-lg font-bold text-warm-text-primary mb-5 flex items-center gap-2">
<span className="w-1 h-5 bg-warm-text-secondary rounded-full"></span>
Detection Visualization
</h3>
<div className="bg-warm-bg rounded-lg overflow-hidden border border-warm-divider">
<img
src={`${import.meta.env.VITE_API_URL || 'http://localhost:8000'}${result.visualization_url}`}
alt="Detection visualization"
className="w-full h-auto"
/>
</div>
</div>
)}
</div>
{/* Right Column: Cross-Validation & Errors */}
<div className="space-y-6">
{/* Cross-Validation */}
{result.cross_validation && (
<div className="bg-warm-card rounded-xl border border-warm-border p-6 shadow-sm">
<h3 className="text-lg font-bold text-warm-text-primary mb-4 flex items-center gap-2">
<span className="w-1 h-5 bg-warm-text-secondary rounded-full"></span>
Payment Line Validation
</h3>
<div
className={`
p-4 rounded-lg mb-4 flex items-center gap-3
${result.cross_validation.is_valid
? 'bg-green-50 border border-green-200'
: 'bg-yellow-50 border border-yellow-200'
}
`}
>
{result.cross_validation.is_valid ? (
<>
<CheckCircle2 size={22} className="text-green-600 flex-shrink-0" />
<span className="font-bold text-green-800">All Fields Match</span>
</>
) : (
<>
<AlertCircle size={22} className="text-yellow-600 flex-shrink-0" />
<span className="font-bold text-yellow-800">Mismatch Detected</span>
</>
)}
</div>
<div className="space-y-2.5">
{result.cross_validation.payment_line_ocr && (
<div
className={`
p-3 rounded-lg border transition-colors
${result.cross_validation.ocr_match === true
? 'bg-green-50 border-green-200'
: result.cross_validation.ocr_match === false
? 'bg-red-50 border-red-200'
: 'bg-warm-bg border-warm-divider'
}
`}
>
<div className="flex items-center justify-between">
<div className="flex-1">
<div className="text-xs font-semibold text-warm-text-muted mb-1">
OCR NUMBER
</div>
<div className="text-sm font-bold text-warm-text-primary font-mono">
{result.cross_validation.payment_line_ocr}
</div>
</div>
{result.cross_validation.ocr_match === true && (
<CheckCircle2 size={16} className="text-green-600" />
)}
{result.cross_validation.ocr_match === false && (
<AlertCircle size={16} className="text-red-600" />
)}
</div>
</div>
)}
{result.cross_validation.payment_line_amount && (
<div
className={`
p-3 rounded-lg border transition-colors
${result.cross_validation.amount_match === true
? 'bg-green-50 border-green-200'
: result.cross_validation.amount_match === false
? 'bg-red-50 border-red-200'
: 'bg-warm-bg border-warm-divider'
}
`}
>
<div className="flex items-center justify-between">
<div className="flex-1">
<div className="text-xs font-semibold text-warm-text-muted mb-1">
AMOUNT
</div>
<div className="text-sm font-bold text-warm-text-primary font-mono">
{result.cross_validation.payment_line_amount}
</div>
</div>
{result.cross_validation.amount_match === true && (
<CheckCircle2 size={16} className="text-green-600" />
)}
{result.cross_validation.amount_match === false && (
<AlertCircle size={16} className="text-red-600" />
)}
</div>
</div>
)}
{result.cross_validation.payment_line_account && (
<div
className={`
p-3 rounded-lg border transition-colors
${(result.cross_validation.payment_line_account_type === 'bankgiro'
? result.cross_validation.bankgiro_match
: result.cross_validation.plusgiro_match) === true
? 'bg-green-50 border-green-200'
: (result.cross_validation.payment_line_account_type === 'bankgiro'
? result.cross_validation.bankgiro_match
: result.cross_validation.plusgiro_match) === false
? 'bg-red-50 border-red-200'
: 'bg-warm-bg border-warm-divider'
}
`}
>
<div className="flex items-center justify-between">
<div className="flex-1">
<div className="text-xs font-semibold text-warm-text-muted mb-1">
{result.cross_validation.payment_line_account_type === 'bankgiro'
? 'BANKGIRO'
: 'PLUSGIRO'}
</div>
<div className="text-sm font-bold text-warm-text-primary font-mono">
{result.cross_validation.payment_line_account}
</div>
</div>
{(result.cross_validation.payment_line_account_type === 'bankgiro'
? result.cross_validation.bankgiro_match
: result.cross_validation.plusgiro_match) === true && (
<CheckCircle2 size={16} className="text-green-600" />
)}
{(result.cross_validation.payment_line_account_type === 'bankgiro'
? result.cross_validation.bankgiro_match
: result.cross_validation.plusgiro_match) === false && (
<AlertCircle size={16} className="text-red-600" />
)}
</div>
</div>
)}
</div>
{result.cross_validation.details.length > 0 && (
<div className="mt-4 p-3 bg-warm-bg/70 rounded-lg text-xs text-warm-text-secondary leading-relaxed border border-warm-divider">
{result.cross_validation.details[result.cross_validation.details.length - 1]}
</div>
)}
</div>
)}
{/* Errors */}
{result.errors.length > 0 && (
<div className="bg-warm-card rounded-xl border border-warm-border p-6 shadow-sm">
<h3 className="text-lg font-bold text-warm-text-primary mb-4 flex items-center gap-2">
<span className="w-1 h-5 bg-red-500 rounded-full"></span>
Issues
</h3>
<div className="space-y-2.5">
{result.errors.map((err, idx) => (
<div
key={idx}
className="p-3 bg-yellow-50 border border-yellow-200 rounded-lg flex items-start gap-3"
>
<AlertCircle size={16} className="text-yellow-600 flex-shrink-0 mt-0.5" />
<span className="text-xs text-yellow-800 leading-relaxed">{err}</span>
</div>
))}
</div>
</div>
)}
</div>
</div>
</div>
)}
</div>
)
}

View File

@@ -0,0 +1,102 @@
import React, { useState } from 'react';
import { Box, LayoutTemplate, Users, BookOpen, LogOut, Sparkles } from 'lucide-react';
interface LayoutProps {
children: React.ReactNode;
activeView: string;
onNavigate: (view: string) => void;
onLogout?: () => void;
}
export const Layout: React.FC<LayoutProps> = ({ children, activeView, onNavigate, onLogout }) => {
const [showDropdown, setShowDropdown] = useState(false);
const navItems = [
{ id: 'dashboard', label: 'Dashboard', icon: LayoutTemplate },
{ id: 'demo', label: 'Demo', icon: Sparkles },
{ id: 'training', label: 'Training', icon: Box }, // Mapped to Compliants visually in prompt, using logical name
{ id: 'documents', label: 'Documents', icon: BookOpen },
{ id: 'models', label: 'Models', icon: Users }, // Contacts in prompt, mapped to models for this use case
];
return (
<div className="min-h-screen bg-warm-bg font-sans text-warm-text-primary flex flex-col">
{/* Top Navigation */}
<nav className="h-14 bg-warm-bg border-b border-warm-border px-6 flex items-center justify-between shrink-0 sticky top-0 z-40">
<div className="flex items-center gap-8">
{/* Logo */}
<div className="flex items-center gap-2">
<div className="w-8 h-8 bg-warm-text-primary rounded-full flex items-center justify-center text-white">
<svg width="16" height="16" viewBox="0 0 24 24" fill="none" stroke="currentColor" strokeWidth="3" strokeLinecap="round" strokeLinejoin="round">
<path d="M12 2L2 7l10 5 10-5-10-5zM2 17l10 5 10-5M2 12l10 5 10-5"/>
</svg>
</div>
</div>
{/* Nav Links */}
<div className="flex h-14">
{navItems.map(item => {
const isActive = activeView === item.id || (activeView === 'detail' && item.id === 'documents');
return (
<button
key={item.id}
onClick={() => onNavigate(item.id)}
className={`
relative px-4 h-full flex items-center text-sm font-medium transition-colors
${isActive ? 'text-warm-text-primary' : 'text-warm-text-muted hover:text-warm-text-secondary'}
`}
>
{item.label}
{isActive && (
<div className="absolute bottom-0 left-0 right-0 h-0.5 bg-warm-text-secondary rounded-t-full mx-2" />
)}
</button>
);
})}
</div>
</div>
{/* User Profile */}
<div className="flex items-center gap-3 pl-6 border-l border-warm-border h-6 relative">
<button
onClick={() => setShowDropdown(!showDropdown)}
className="w-8 h-8 rounded-full bg-warm-selected flex items-center justify-center text-xs font-semibold text-warm-text-secondary border border-warm-divider hover:bg-warm-hover transition-colors"
>
AD
</button>
{showDropdown && (
<>
<div
className="fixed inset-0 z-10"
onClick={() => setShowDropdown(false)}
/>
<div className="absolute right-0 top-10 w-48 bg-warm-card border border-warm-border rounded-lg shadow-modal z-20">
<div className="p-3 border-b border-warm-border">
<p className="text-sm font-medium text-warm-text-primary">Admin User</p>
<p className="text-xs text-warm-text-muted mt-0.5">Authenticated</p>
</div>
{onLogout && (
<button
onClick={() => {
setShowDropdown(false)
onLogout()
}}
className="w-full px-3 py-2 text-left text-sm text-warm-text-secondary hover:bg-warm-hover transition-colors flex items-center gap-2"
>
<LogOut size={14} />
Sign Out
</button>
)}
</div>
</>
)}
</div>
</nav>
{/* Main Content */}
<main className="flex-1 overflow-auto">
{children}
</main>
</div>
);
};

View File

@@ -0,0 +1,188 @@
import React, { useState } from 'react'
import { Button } from './Button'
interface LoginProps {
onLogin: (token: string) => void
}
export const Login: React.FC<LoginProps> = ({ onLogin }) => {
const [token, setToken] = useState('')
const [name, setName] = useState('')
const [description, setDescription] = useState('')
const [isCreating, setIsCreating] = useState(false)
const [error, setError] = useState('')
const [createdToken, setCreatedToken] = useState('')
const handleLoginWithToken = () => {
if (!token.trim()) {
setError('Please enter a token')
return
}
localStorage.setItem('admin_token', token.trim())
onLogin(token.trim())
}
const handleCreateToken = async () => {
if (!name.trim()) {
setError('Please enter a token name')
return
}
setIsCreating(true)
setError('')
try {
const response = await fetch('http://localhost:8000/api/v1/admin/auth/token', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
name: name.trim(),
description: description.trim() || undefined,
}),
})
if (!response.ok) {
throw new Error('Failed to create token')
}
const data = await response.json()
setCreatedToken(data.token)
setToken(data.token)
setError('')
} catch (err) {
setError('Failed to create token. Please check your connection.')
console.error(err)
} finally {
setIsCreating(false)
}
}
const handleUseCreatedToken = () => {
if (createdToken) {
localStorage.setItem('admin_token', createdToken)
onLogin(createdToken)
}
}
return (
<div className="min-h-screen bg-warm-bg flex items-center justify-center p-4">
<div className="bg-warm-card border border-warm-border rounded-lg shadow-modal p-8 max-w-md w-full">
<h1 className="text-2xl font-bold text-warm-text-primary mb-2">
Admin Authentication
</h1>
<p className="text-sm text-warm-text-muted mb-6">
Sign in with an admin token to access the document management system
</p>
{error && (
<div className="mb-4 p-3 bg-red-50 border border-red-200 text-red-800 rounded text-sm">
{error}
</div>
)}
{createdToken && (
<div className="mb-4 p-3 bg-green-50 border border-green-200 rounded">
<p className="text-sm font-medium text-green-800 mb-2">Token created successfully!</p>
<div className="bg-white border border-green-300 rounded p-2 mb-3">
<code className="text-xs font-mono text-warm-text-primary break-all">
{createdToken}
</code>
</div>
<p className="text-xs text-green-700 mb-3">
Save this token securely. You won't be able to see it again.
</p>
<Button onClick={handleUseCreatedToken} className="w-full">
Use This Token
</Button>
</div>
)}
<div className="space-y-6">
{/* Login with existing token */}
<div>
<h2 className="text-sm font-semibold text-warm-text-secondary mb-3">
Sign in with existing token
</h2>
<div className="space-y-3">
<div>
<label className="block text-sm text-warm-text-secondary mb-1">
Admin Token
</label>
<input
type="text"
value={token}
onChange={(e) => setToken(e.target.value)}
placeholder="Enter your admin token"
className="w-full px-3 py-2 border border-warm-border rounded-md text-sm focus:outline-none focus:ring-1 focus:ring-warm-state-info font-mono"
onKeyDown={(e) => e.key === 'Enter' && handleLoginWithToken()}
/>
</div>
<Button onClick={handleLoginWithToken} className="w-full">
Sign In
</Button>
</div>
</div>
<div className="relative">
<div className="absolute inset-0 flex items-center">
<div className="w-full border-t border-warm-border"></div>
</div>
<div className="relative flex justify-center text-xs">
<span className="px-2 bg-warm-card text-warm-text-muted">OR</span>
</div>
</div>
{/* Create new token */}
<div>
<h2 className="text-sm font-semibold text-warm-text-secondary mb-3">
Create new admin token
</h2>
<div className="space-y-3">
<div>
<label className="block text-sm text-warm-text-secondary mb-1">
Token Name <span className="text-red-500">*</span>
</label>
<input
type="text"
value={name}
onChange={(e) => setName(e.target.value)}
placeholder="e.g., my-laptop"
className="w-full px-3 py-2 border border-warm-border rounded-md text-sm focus:outline-none focus:ring-1 focus:ring-warm-state-info"
/>
</div>
<div>
<label className="block text-sm text-warm-text-secondary mb-1">
Description (optional)
</label>
<input
type="text"
value={description}
onChange={(e) => setDescription(e.target.value)}
placeholder="e.g., Personal laptop access"
className="w-full px-3 py-2 border border-warm-border rounded-md text-sm focus:outline-none focus:ring-1 focus:ring-warm-state-info"
/>
</div>
<Button
onClick={handleCreateToken}
variant="secondary"
disabled={isCreating}
className="w-full"
>
{isCreating ? 'Creating...' : 'Create Token'}
</Button>
</div>
</div>
</div>
<div className="mt-6 pt-4 border-t border-warm-border">
<p className="text-xs text-warm-text-muted">
Admin tokens are used to authenticate with the document management API.
Keep your tokens secure and never share them.
</p>
</div>
</div>
</div>
)
}

View File

@@ -0,0 +1,208 @@
import React, { useState } from 'react';
import { BarChart, Bar, XAxis, YAxis, CartesianGrid, Tooltip, ResponsiveContainer } from 'recharts';
import { Loader2, Power, CheckCircle } from 'lucide-react';
import { Button } from './Button';
import { useModels, useModelDetail } from '../hooks';
import type { ModelVersionItem } from '../api/types';
const formatDate = (dateString: string | null): string => {
if (!dateString) return 'N/A';
return new Date(dateString).toLocaleString();
};
export const Models: React.FC = () => {
const [selectedModel, setSelectedModel] = useState<ModelVersionItem | null>(null);
const { models, isLoading, activateModel, isActivating } = useModels();
const { model: modelDetail } = useModelDetail(selectedModel?.version_id ?? null);
// Build chart data from selected model's metrics
const metricsData = modelDetail ? [
{ name: 'Precision', value: (modelDetail.metrics_precision ?? 0) * 100 },
{ name: 'Recall', value: (modelDetail.metrics_recall ?? 0) * 100 },
{ name: 'mAP', value: (modelDetail.metrics_mAP ?? 0) * 100 },
] : [
{ name: 'Precision', value: 0 },
{ name: 'Recall', value: 0 },
{ name: 'mAP', value: 0 },
];
// Build comparison chart from all models (with placeholder if empty)
const chartData = models.length > 0
? models.slice(0, 4).map(m => ({
name: m.version,
value: (m.metrics_mAP ?? 0) * 100,
}))
: [
{ name: 'Model A', value: 0 },
{ name: 'Model B', value: 0 },
{ name: 'Model C', value: 0 },
{ name: 'Model D', value: 0 },
];
return (
<div className="p-8 max-w-7xl mx-auto flex gap-8">
{/* Left: Job History */}
<div className="flex-1">
<h2 className="text-2xl font-bold text-warm-text-primary mb-6">Models & History</h2>
<h3 className="text-lg font-semibold text-warm-text-primary mb-4">Model Versions</h3>
{isLoading ? (
<div className="flex items-center justify-center py-12">
<Loader2 className="animate-spin text-warm-text-muted" size={32} />
</div>
) : models.length === 0 ? (
<div className="text-center py-12 text-warm-text-muted">
No model versions found. Complete a training task to create a model version.
</div>
) : (
<div className="space-y-4">
{models.map(model => (
<div
key={model.version_id}
onClick={() => setSelectedModel(model)}
className={`bg-warm-card border rounded-lg p-5 shadow-sm cursor-pointer transition-colors ${
selectedModel?.version_id === model.version_id
? 'border-warm-text-secondary'
: 'border-warm-border hover:border-warm-divider'
}`}
>
<div className="flex justify-between items-start mb-2">
<div>
<h4 className="font-semibold text-warm-text-primary text-lg mb-1">
{model.name}
{model.is_active && <CheckCircle size={16} className="inline ml-2 text-warm-state-info" />}
</h4>
<p className="text-sm text-warm-text-muted">Trained {formatDate(model.trained_at)}</p>
</div>
<span className={`px-3 py-1 rounded-full text-xs font-medium ${
model.is_active
? 'bg-warm-state-info/10 text-warm-state-info'
: 'bg-warm-selected text-warm-state-success'
}`}>
{model.is_active ? 'Active' : model.status}
</span>
</div>
<div className="mt-4 flex gap-8">
<div>
<span className="block text-xs text-warm-text-muted uppercase tracking-wide">Documents</span>
<span className="text-lg font-mono text-warm-text-secondary">{model.document_count}</span>
</div>
<div>
<span className="block text-xs text-warm-text-muted uppercase tracking-wide">mAP</span>
<span className="text-lg font-mono text-warm-text-secondary">
{model.metrics_mAP ? `${(model.metrics_mAP * 100).toFixed(1)}%` : 'N/A'}
</span>
</div>
<div>
<span className="block text-xs text-warm-text-muted uppercase tracking-wide">Version</span>
<span className="text-lg font-mono text-warm-text-secondary">{model.version}</span>
</div>
</div>
</div>
))}
</div>
)}
</div>
{/* Right: Model Detail */}
<div className="w-[400px]">
<div className="bg-warm-card border border-warm-border rounded-lg p-6 shadow-card sticky top-8">
<div className="flex justify-between items-center mb-6">
<h3 className="text-xl font-bold text-warm-text-primary">Model Detail</h3>
<span className={`text-sm font-medium ${
selectedModel?.is_active ? 'text-warm-state-info' : 'text-warm-state-success'
}`}>
{selectedModel ? (selectedModel.is_active ? 'Active' : selectedModel.status) : '-'}
</span>
</div>
<div className="mb-8">
<p className="text-sm text-warm-text-muted mb-1">Model name</p>
<p className="font-medium text-warm-text-primary">
{selectedModel ? `${selectedModel.name} (${selectedModel.version})` : 'Select a model'}
</p>
</div>
<div className="space-y-8">
{/* Chart 1 */}
<div>
<h4 className="text-sm font-semibold text-warm-text-secondary mb-4">Model Comparison (mAP)</h4>
<div className="h-40">
<ResponsiveContainer width="100%" height="100%">
<BarChart data={chartData}>
<CartesianGrid strokeDasharray="3 3" vertical={false} stroke="#E6E4E1" />
<XAxis dataKey="name" tick={{fontSize: 10, fill: '#6B6B6B'}} axisLine={false} tickLine={false} />
<YAxis hide domain={[0, 100]} />
<Tooltip
cursor={{fill: '#F1F0ED'}}
contentStyle={{borderRadius: '8px', border: '1px solid #E6E4E1', boxShadow: '0 2px 5px rgba(0,0,0,0.05)'}}
formatter={(value: number) => [`${value.toFixed(1)}%`, 'mAP']}
/>
<Bar dataKey="value" fill="#3A3A3A" radius={[4, 4, 0, 0]} barSize={32} />
</BarChart>
</ResponsiveContainer>
</div>
</div>
{/* Chart 2 */}
<div>
<h4 className="text-sm font-semibold text-warm-text-secondary mb-4">Performance Metrics</h4>
<div className="h-40">
<ResponsiveContainer width="100%" height="100%">
<BarChart data={metricsData}>
<CartesianGrid strokeDasharray="3 3" vertical={false} stroke="#E6E4E1" />
<XAxis dataKey="name" tick={{fontSize: 10, fill: '#6B6B6B'}} axisLine={false} tickLine={false} />
<YAxis hide domain={[0, 100]} />
<Tooltip
cursor={{fill: '#F1F0ED'}}
formatter={(value: number) => [`${value.toFixed(1)}%`, 'Score']}
/>
<Bar dataKey="value" fill="#3A3A3A" radius={[4, 4, 0, 0]} barSize={32} />
</BarChart>
</ResponsiveContainer>
</div>
</div>
</div>
<div className="mt-8 space-y-3">
{selectedModel && !selectedModel.is_active ? (
<Button
className="w-full"
onClick={() => activateModel(selectedModel.version_id)}
disabled={isActivating}
>
{isActivating ? (
<>
<Loader2 size={16} className="mr-2 animate-spin" />
Activating...
</>
) : (
<>
<Power size={16} className="mr-2" />
Activate for Inference
</>
)}
</Button>
) : (
<Button className="w-full" disabled={!selectedModel}>
{selectedModel?.is_active ? (
<>
<CheckCircle size={16} className="mr-2" />
Currently Active
</>
) : (
'Select a Model'
)}
</Button>
)}
<div className="flex gap-3">
<Button variant="secondary" className="flex-1" disabled={!selectedModel}>View Logs</Button>
<Button variant="secondary" className="flex-1" disabled={!selectedModel}>Use as Base</Button>
</div>
</div>
</div>
</div>
</div>
);
};

View File

@@ -0,0 +1,487 @@
import React, { useState, useMemo } from 'react'
import { useQuery } from '@tanstack/react-query'
import { Database, Plus, Trash2, Eye, Play, Check, Loader2, AlertCircle } from 'lucide-react'
import { Button } from './Button'
import { AugmentationConfig } from './AugmentationConfig'
import { useDatasets } from '../hooks/useDatasets'
import { useTrainingDocuments } from '../hooks/useTraining'
import { trainingApi } from '../api/endpoints'
import type { DatasetListItem } from '../api/types'
import type { AugmentationConfig as AugmentationConfigType } from '../api/endpoints/augmentation'
type Tab = 'datasets' | 'create'
interface TrainingProps {
onNavigate?: (view: string, id?: string) => void
}
const STATUS_STYLES: Record<string, string> = {
ready: 'bg-warm-state-success/10 text-warm-state-success',
building: 'bg-warm-state-info/10 text-warm-state-info',
training: 'bg-warm-state-info/10 text-warm-state-info',
failed: 'bg-warm-state-error/10 text-warm-state-error',
pending: 'bg-warm-state-warning/10 text-warm-state-warning',
scheduled: 'bg-warm-state-warning/10 text-warm-state-warning',
running: 'bg-warm-state-info/10 text-warm-state-info',
}
const StatusBadge: React.FC<{ status: string; trainingStatus?: string | null }> = ({ status, trainingStatus }) => {
// If there's an active training task, show training status
const displayStatus = trainingStatus === 'running'
? 'training'
: trainingStatus === 'pending' || trainingStatus === 'scheduled'
? 'pending'
: status
return (
<span className={`inline-flex items-center px-2.5 py-1 rounded-full text-xs font-medium ${STATUS_STYLES[displayStatus] ?? 'bg-warm-border text-warm-text-muted'}`}>
{(displayStatus === 'building' || displayStatus === 'training') && <Loader2 size={12} className="mr-1 animate-spin" />}
{displayStatus === 'ready' && <Check size={12} className="mr-1" />}
{displayStatus === 'failed' && <AlertCircle size={12} className="mr-1" />}
{displayStatus}
</span>
)
}
// --- Train Dialog ---
interface TrainDialogProps {
dataset: DatasetListItem
onClose: () => void
onSubmit: (config: {
name: string
config: {
model_name?: string
base_model_version_id?: string | null
epochs: number
batch_size: number
augmentation?: AugmentationConfigType
augmentation_multiplier?: number
}
}) => void
isPending: boolean
}
const TrainDialog: React.FC<TrainDialogProps> = ({ dataset, onClose, onSubmit, isPending }) => {
const [name, setName] = useState(`train-${dataset.name}`)
const [epochs, setEpochs] = useState(100)
const [batchSize, setBatchSize] = useState(16)
const [baseModelType, setBaseModelType] = useState<'pretrained' | 'existing'>('pretrained')
const [baseModelVersionId, setBaseModelVersionId] = useState<string | null>(null)
const [augmentationEnabled, setAugmentationEnabled] = useState(false)
const [augmentationConfig, setAugmentationConfig] = useState<Partial<AugmentationConfigType>>({})
const [augmentationMultiplier, setAugmentationMultiplier] = useState(2)
// Fetch available trained models (active or inactive, not archived)
const { data: modelsData } = useQuery({
queryKey: ['training', 'models', 'available'],
queryFn: () => trainingApi.getModels(),
})
// Filter out archived models - only show active/inactive models for base model selection
const availableModels = (modelsData?.models ?? []).filter(m => m.status !== 'archived')
const handleSubmit = () => {
onSubmit({
name,
config: {
model_name: baseModelType === 'pretrained' ? 'yolo11n.pt' : undefined,
base_model_version_id: baseModelType === 'existing' ? baseModelVersionId : null,
epochs,
batch_size: batchSize,
augmentation: augmentationEnabled
? (augmentationConfig as AugmentationConfigType)
: undefined,
augmentation_multiplier: augmentationEnabled ? augmentationMultiplier : undefined,
},
})
}
return (
<div className="fixed inset-0 bg-black/40 flex items-center justify-center z-50" onClick={onClose}>
<div className="bg-white rounded-lg border border-warm-border shadow-lg w-[480px] max-h-[90vh] overflow-y-auto p-6" onClick={e => e.stopPropagation()}>
<h3 className="text-lg font-semibold text-warm-text-primary mb-4">Start Training</h3>
<p className="text-sm text-warm-text-muted mb-4">
Dataset: <span className="font-medium text-warm-text-secondary">{dataset.name}</span>
{' '}({dataset.total_images} images, {dataset.total_annotations} annotations)
</p>
<div className="space-y-4">
<div>
<label className="block text-sm font-medium text-warm-text-secondary mb-1">Task Name</label>
<input type="text" value={name} onChange={e => setName(e.target.value)}
className="w-full h-10 px-3 rounded-md border border-warm-divider bg-white text-warm-text-primary focus:outline-none focus:ring-1 focus:ring-warm-state-info" />
</div>
{/* Base Model Selection */}
<div>
<label className="block text-sm font-medium text-warm-text-secondary mb-1">Base Model</label>
<select
value={baseModelType === 'pretrained' ? 'pretrained' : baseModelVersionId ?? ''}
onChange={e => {
if (e.target.value === 'pretrained') {
setBaseModelType('pretrained')
setBaseModelVersionId(null)
} else {
setBaseModelType('existing')
setBaseModelVersionId(e.target.value)
}
}}
className="w-full h-10 px-3 rounded-md border border-warm-divider bg-white text-warm-text-primary focus:outline-none focus:ring-1 focus:ring-warm-state-info"
>
<option value="pretrained">yolo11n.pt (Pretrained)</option>
{availableModels.map(m => (
<option key={m.version_id} value={m.version_id}>
{m.name} v{m.version} ({m.metrics_mAP ? `${(m.metrics_mAP * 100).toFixed(1)}% mAP` : 'No metrics'})
</option>
))}
</select>
<p className="text-xs text-warm-text-muted mt-1">
{baseModelType === 'pretrained'
? 'Start from pretrained YOLO model'
: 'Continue training from an existing model (incremental training)'}
</p>
</div>
<div className="flex gap-4">
<div className="flex-1">
<label htmlFor="train-epochs" className="block text-sm font-medium text-warm-text-secondary mb-1">Epochs</label>
<input
id="train-epochs"
type="number"
min={1}
max={1000}
value={epochs}
onChange={e => setEpochs(Math.max(1, Math.min(1000, Number(e.target.value) || 1)))}
className="w-full h-10 px-3 rounded-md border border-warm-divider bg-white text-warm-text-primary focus:outline-none focus:ring-1 focus:ring-warm-state-info"
/>
</div>
<div className="flex-1">
<label htmlFor="train-batch-size" className="block text-sm font-medium text-warm-text-secondary mb-1">Batch Size</label>
<input
id="train-batch-size"
type="number"
min={1}
max={128}
value={batchSize}
onChange={e => setBatchSize(Math.max(1, Math.min(128, Number(e.target.value) || 1)))}
className="w-full h-10 px-3 rounded-md border border-warm-divider bg-white text-warm-text-primary focus:outline-none focus:ring-1 focus:ring-warm-state-info"
/>
</div>
</div>
{/* Augmentation Configuration */}
<AugmentationConfig
enabled={augmentationEnabled}
onEnabledChange={setAugmentationEnabled}
config={augmentationConfig}
onConfigChange={setAugmentationConfig}
/>
{/* Augmentation Multiplier - only shown when augmentation is enabled */}
{augmentationEnabled && (
<div>
<label htmlFor="aug-multiplier" className="block text-sm font-medium text-warm-text-secondary mb-1">
Augmentation Multiplier
</label>
<input
id="aug-multiplier"
type="number"
min={1}
max={10}
value={augmentationMultiplier}
onChange={e => setAugmentationMultiplier(Math.max(1, Math.min(10, Number(e.target.value) || 1)))}
className="w-full h-10 px-3 rounded-md border border-warm-divider bg-white text-warm-text-primary focus:outline-none focus:ring-1 focus:ring-warm-state-info"
/>
<p className="text-xs text-warm-text-muted mt-1">
Number of augmented copies per original image (1-10)
</p>
</div>
)}
</div>
<div className="flex justify-end gap-3 mt-6">
<Button variant="secondary" onClick={onClose} disabled={isPending}>Cancel</Button>
<Button onClick={handleSubmit} disabled={isPending || !name.trim()}>
{isPending ? <><Loader2 size={14} className="mr-1 animate-spin" />Training...</> : 'Start Training'}
</Button>
</div>
</div>
</div>
)
}
// --- Dataset List ---
const DatasetList: React.FC<{
onNavigate?: (view: string, id?: string) => void
onSwitchTab: (tab: Tab) => void
}> = ({ onNavigate, onSwitchTab }) => {
const { datasets, isLoading, deleteDataset, isDeleting, trainFromDataset, isTraining } = useDatasets()
const [trainTarget, setTrainTarget] = useState<DatasetListItem | null>(null)
const handleTrain = (config: {
name: string
config: {
model_name?: string
base_model_version_id?: string | null
epochs: number
batch_size: number
augmentation?: AugmentationConfigType
augmentation_multiplier?: number
}
}) => {
if (!trainTarget) return
// Pass config to the training API
const trainRequest = {
name: config.name,
config: config.config,
}
trainFromDataset(
{ datasetId: trainTarget.dataset_id, req: trainRequest },
{ onSuccess: () => setTrainTarget(null) },
)
}
if (isLoading) {
return <div className="flex items-center justify-center py-20 text-warm-text-muted"><Loader2 size={24} className="animate-spin mr-2" />Loading datasets...</div>
}
if (datasets.length === 0) {
return (
<div className="flex flex-col items-center justify-center py-20 text-warm-text-muted">
<Database size={48} className="mb-4 opacity-40" />
<p className="text-lg mb-2">No datasets yet</p>
<p className="text-sm mb-4">Create a dataset to start training</p>
<Button onClick={() => onSwitchTab('create')}><Plus size={14} className="mr-1" />Create Dataset</Button>
</div>
)
}
return (
<>
<div className="bg-warm-card border border-warm-border rounded-lg overflow-hidden shadow-sm">
<table className="w-full text-left">
<thead className="bg-white border-b border-warm-border">
<tr>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Name</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Status</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Docs</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Images</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Annotations</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Created</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Actions</th>
</tr>
</thead>
<tbody>
{datasets.map(ds => (
<tr key={ds.dataset_id} className="border-b border-warm-border hover:bg-warm-hover transition-colors">
<td className="py-3 px-4 text-sm font-medium text-warm-text-secondary">{ds.name}</td>
<td className="py-3 px-4"><StatusBadge status={ds.status} trainingStatus={ds.training_status} /></td>
<td className="py-3 px-4 text-sm text-warm-text-muted font-mono">{ds.total_documents}</td>
<td className="py-3 px-4 text-sm text-warm-text-muted font-mono">{ds.total_images}</td>
<td className="py-3 px-4 text-sm text-warm-text-muted font-mono">{ds.total_annotations}</td>
<td className="py-3 px-4 text-sm text-warm-text-muted">{new Date(ds.created_at).toLocaleDateString()}</td>
<td className="py-3 px-4">
<div className="flex gap-1">
<button title="View" onClick={() => onNavigate?.('dataset-detail', ds.dataset_id)}
className="p-1.5 rounded hover:bg-warm-selected text-warm-text-muted hover:text-warm-state-info transition-colors">
<Eye size={14} />
</button>
{ds.status === 'ready' && (
<button title="Train" onClick={() => setTrainTarget(ds)}
className="p-1.5 rounded hover:bg-warm-selected text-warm-text-muted hover:text-warm-state-success transition-colors">
<Play size={14} />
</button>
)}
<button title="Delete" onClick={() => deleteDataset(ds.dataset_id)}
disabled={isDeleting || ds.status === 'pending' || ds.status === 'building'}
className={`p-1.5 rounded transition-colors ${
ds.status === 'pending' || ds.status === 'building'
? 'text-warm-text-muted/40 cursor-not-allowed'
: 'hover:bg-warm-selected text-warm-text-muted hover:text-warm-state-error'
}`}>
<Trash2 size={14} />
</button>
</div>
</td>
</tr>
))}
</tbody>
</table>
</div>
{trainTarget && (
<TrainDialog dataset={trainTarget} onClose={() => setTrainTarget(null)} onSubmit={handleTrain} isPending={isTraining} />
)}
</>
)
}
// --- Create Dataset ---
const CreateDataset: React.FC<{ onSwitchTab: (tab: Tab) => void }> = ({ onSwitchTab }) => {
const { documents, isLoading: isLoadingDocs } = useTrainingDocuments({ has_annotations: true })
const { createDatasetAsync, isCreating } = useDatasets()
const [selectedIds, setSelectedIds] = useState<Set<string>>(new Set())
const [name, setName] = useState('')
const [description, setDescription] = useState('')
const [trainRatio, setTrainRatio] = useState(0.7)
const [valRatio, setValRatio] = useState(0.2)
const testRatio = useMemo(() => Math.max(0, +(1 - trainRatio - valRatio).toFixed(2)), [trainRatio, valRatio])
const toggleDoc = (id: string) => {
setSelectedIds(prev => {
const next = new Set(prev)
if (next.has(id)) { next.delete(id) } else { next.add(id) }
return next
})
}
const toggleAll = () => {
if (selectedIds.size === documents.length) {
setSelectedIds(new Set())
} else {
setSelectedIds(new Set(documents.map((d) => d.document_id)))
}
}
const handleCreate = async () => {
await createDatasetAsync({
name,
description: description || undefined,
document_ids: [...selectedIds],
train_ratio: trainRatio,
val_ratio: valRatio,
})
onSwitchTab('datasets')
}
return (
<div className="flex gap-8">
{/* Document selection */}
<div className="flex-1 flex flex-col">
<h3 className="text-lg font-semibold text-warm-text-primary mb-4">Select Documents</h3>
{isLoadingDocs ? (
<div className="flex items-center justify-center py-12 text-warm-text-muted"><Loader2 size={20} className="animate-spin mr-2" />Loading...</div>
) : (
<div className="bg-warm-card border border-warm-border rounded-lg overflow-hidden shadow-sm flex-1">
<div className="overflow-auto max-h-[calc(100vh-240px)]">
<table className="w-full text-left">
<thead className="sticky top-0 bg-white border-b border-warm-border z-10">
<tr>
<th className="py-3 pl-6 pr-4 w-12">
<input type="checkbox" checked={selectedIds.size === documents.length && documents.length > 0}
onChange={toggleAll} className="rounded border-warm-divider accent-warm-state-info" />
</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Document ID</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Pages</th>
<th className="py-3 px-4 text-xs font-semibold text-warm-text-muted uppercase">Annotations</th>
</tr>
</thead>
<tbody>
{documents.map((doc) => (
<tr key={doc.document_id} className="border-b border-warm-border hover:bg-warm-hover transition-colors cursor-pointer"
onClick={() => toggleDoc(doc.document_id)}>
<td className="py-3 pl-6 pr-4">
<input type="checkbox" checked={selectedIds.has(doc.document_id)} readOnly
className="rounded border-warm-divider accent-warm-state-info pointer-events-none" />
</td>
<td className="py-3 px-4 text-sm font-mono text-warm-text-secondary">{doc.document_id.slice(0, 8)}...</td>
<td className="py-3 px-4 text-sm text-warm-text-muted font-mono">{doc.page_count}</td>
<td className="py-3 px-4 text-sm text-warm-text-muted font-mono">{doc.annotation_count ?? 0}</td>
</tr>
))}
</tbody>
</table>
</div>
</div>
)}
<p className="text-sm text-warm-text-muted mt-2">{selectedIds.size} of {documents.length} documents selected</p>
</div>
{/* Config panel */}
<div className="w-80">
<div className="bg-warm-card rounded-lg border border-warm-border shadow-card p-6 sticky top-8">
<h3 className="text-lg font-semibold text-warm-text-primary mb-4">Dataset Configuration</h3>
<div className="space-y-4">
<div>
<label className="block text-sm font-medium text-warm-text-secondary mb-1">Name</label>
<input type="text" value={name} onChange={e => setName(e.target.value)} placeholder="e.g. invoice-dataset-v1"
className="w-full h-10 px-3 rounded-md border border-warm-divider bg-white text-warm-text-primary focus:outline-none focus:ring-1 focus:ring-warm-state-info" />
</div>
<div>
<label className="block text-sm font-medium text-warm-text-secondary mb-1">Description</label>
<textarea value={description} onChange={e => setDescription(e.target.value)} rows={2} placeholder="Optional"
className="w-full px-3 py-2 rounded-md border border-warm-divider bg-white text-warm-text-primary focus:outline-none focus:ring-1 focus:ring-warm-state-info resize-none" />
</div>
<div>
<label className="block text-sm font-medium text-warm-text-secondary mb-1">Train / Val / Test Split</label>
<div className="flex gap-2 text-sm">
<div className="flex-1">
<span className="text-xs text-warm-text-muted">Train</span>
<input type="number" step={0.05} min={0.1} max={0.9} value={trainRatio} onChange={e => setTrainRatio(Number(e.target.value))}
className="w-full h-9 px-2 rounded-md border border-warm-divider bg-white text-warm-text-primary text-center font-mono focus:outline-none focus:ring-1 focus:ring-warm-state-info" />
</div>
<div className="flex-1">
<span className="text-xs text-warm-text-muted">Val</span>
<input type="number" step={0.05} min={0} max={0.5} value={valRatio} onChange={e => setValRatio(Number(e.target.value))}
className="w-full h-9 px-2 rounded-md border border-warm-divider bg-white text-warm-text-primary text-center font-mono focus:outline-none focus:ring-1 focus:ring-warm-state-info" />
</div>
<div className="flex-1">
<span className="text-xs text-warm-text-muted">Test</span>
<input type="number" value={testRatio} readOnly
className="w-full h-9 px-2 rounded-md border border-warm-divider bg-warm-hover text-warm-text-muted text-center font-mono" />
</div>
</div>
</div>
<div className="pt-4 border-t border-warm-border">
{selectedIds.size > 0 && selectedIds.size < 10 && (
<p className="text-xs text-warm-state-warning mb-2">
Minimum 10 documents required for training ({selectedIds.size}/10 selected)
</p>
)}
<Button className="w-full h-11" onClick={handleCreate}
disabled={isCreating || selectedIds.size < 10 || !name.trim()}>
{isCreating ? <><Loader2 size={14} className="mr-1 animate-spin" />Creating...</> : <><Plus size={14} className="mr-1" />Create Dataset</>}
</Button>
</div>
</div>
</div>
</div>
</div>
)
}
// --- Main Training Component ---
export const Training: React.FC<TrainingProps> = ({ onNavigate }) => {
const [activeTab, setActiveTab] = useState<Tab>('datasets')
return (
<div className="p-8 max-w-7xl mx-auto">
<div className="flex items-center justify-between mb-6">
<h2 className="text-2xl font-bold text-warm-text-primary">Training</h2>
</div>
{/* Tabs */}
<div className="flex gap-1 mb-6 border-b border-warm-border">
{([['datasets', 'Datasets'], ['create', 'Create Dataset']] as const).map(([key, label]) => (
<button key={key} onClick={() => setActiveTab(key)}
className={`px-4 py-2.5 text-sm font-medium border-b-2 transition-colors ${
activeTab === key
? 'border-warm-state-info text-warm-state-info'
: 'border-transparent text-warm-text-muted hover:text-warm-text-secondary'
}`}>
{label}
</button>
))}
</div>
{activeTab === 'datasets' && <DatasetList onNavigate={onNavigate} onSwitchTab={setActiveTab} />}
{activeTab === 'create' && <CreateDataset onSwitchTab={setActiveTab} />}
</div>
)
}

View File

@@ -0,0 +1,276 @@
import React, { useState, useRef } from 'react'
import { X, UploadCloud, File, CheckCircle, AlertCircle, ChevronDown } from 'lucide-react'
import { Button } from './Button'
import { useDocuments, useCategories } from '../hooks/useDocuments'
interface UploadModalProps {
isOpen: boolean
onClose: () => void
}
export const UploadModal: React.FC<UploadModalProps> = ({ isOpen, onClose }) => {
const [isDragging, setIsDragging] = useState(false)
const [selectedFiles, setSelectedFiles] = useState<File[]>([])
const [groupKey, setGroupKey] = useState('')
const [category, setCategory] = useState('invoice')
const [uploadStatus, setUploadStatus] = useState<'idle' | 'uploading' | 'success' | 'error'>('idle')
const [errorMessage, setErrorMessage] = useState('')
const fileInputRef = useRef<HTMLInputElement>(null)
const { uploadDocument, isUploading } = useDocuments({})
const { categories } = useCategories()
if (!isOpen) return null
const handleFileSelect = (files: FileList | null) => {
if (!files) return
const pdfFiles = Array.from(files).filter(file => {
const isPdf = file.type === 'application/pdf'
const isImage = file.type.startsWith('image/')
const isUnder25MB = file.size <= 25 * 1024 * 1024
return (isPdf || isImage) && isUnder25MB
})
setSelectedFiles(prev => [...prev, ...pdfFiles])
setUploadStatus('idle')
setErrorMessage('')
}
const handleDrop = (e: React.DragEvent) => {
e.preventDefault()
setIsDragging(false)
handleFileSelect(e.dataTransfer.files)
}
const handleBrowseClick = () => {
fileInputRef.current?.click()
}
const removeFile = (index: number) => {
setSelectedFiles(prev => prev.filter((_, i) => i !== index))
}
const handleUpload = async () => {
if (selectedFiles.length === 0) {
setErrorMessage('Please select at least one file')
return
}
setUploadStatus('uploading')
setErrorMessage('')
try {
// Upload files one by one
for (const file of selectedFiles) {
await new Promise<void>((resolve, reject) => {
uploadDocument(
{ file, groupKey: groupKey || undefined, category: category || 'invoice' },
{
onSuccess: () => resolve(),
onError: (error: Error) => reject(error),
}
)
})
}
setUploadStatus('success')
setTimeout(() => {
onClose()
setSelectedFiles([])
setGroupKey('')
setCategory('invoice')
setUploadStatus('idle')
}, 1500)
} catch (error) {
setUploadStatus('error')
setErrorMessage(error instanceof Error ? error.message : 'Upload failed')
}
}
const handleClose = () => {
if (uploadStatus === 'uploading') {
return // Prevent closing during upload
}
setSelectedFiles([])
setGroupKey('')
setCategory('invoice')
setUploadStatus('idle')
setErrorMessage('')
onClose()
}
return (
<div className="fixed inset-0 z-50 flex items-center justify-center bg-black/20 backdrop-blur-sm transition-opacity duration-200">
<div
className="w-full max-w-lg bg-warm-card rounded-lg shadow-modal border border-warm-border transform transition-all duration-200 scale-100 p-6"
onClick={(e) => e.stopPropagation()}
>
<div className="flex items-center justify-between mb-6">
<h3 className="text-xl font-semibold text-warm-text-primary">Upload Documents</h3>
<button
onClick={handleClose}
className="text-warm-text-muted hover:text-warm-text-primary transition-colors disabled:opacity-50"
disabled={uploadStatus === 'uploading'}
>
<X size={20} />
</button>
</div>
{/* Drop Zone */}
<div
className={`
w-full h-48 rounded-lg border-2 border-dashed flex flex-col items-center justify-center gap-3 transition-colors duration-150 mb-6 cursor-pointer
${isDragging ? 'border-warm-text-secondary bg-warm-selected' : 'border-warm-divider bg-warm-bg hover:bg-warm-hover'}
${uploadStatus === 'uploading' ? 'opacity-50 pointer-events-none' : ''}
`}
onDragOver={(e) => { e.preventDefault(); setIsDragging(true); }}
onDragLeave={() => setIsDragging(false)}
onDrop={handleDrop}
onClick={handleBrowseClick}
>
<div className="p-3 bg-white rounded-full shadow-sm">
<UploadCloud size={24} className="text-warm-text-secondary" />
</div>
<div className="text-center">
<p className="text-sm font-medium text-warm-text-primary">
Drag & drop files here or <span className="underline decoration-1 underline-offset-2 hover:text-warm-state-info">Browse</span>
</p>
<p className="text-xs text-warm-text-muted mt-1">PDF, JPG, PNG up to 25MB</p>
</div>
</div>
<input
ref={fileInputRef}
type="file"
multiple
accept=".pdf,image/*"
className="hidden"
onChange={(e) => handleFileSelect(e.target.files)}
/>
{/* Selected Files */}
{selectedFiles.length > 0 && (
<div className="mb-6 max-h-40 overflow-y-auto">
<p className="text-sm font-medium text-warm-text-secondary mb-2">
Selected Files ({selectedFiles.length})
</p>
<div className="space-y-2">
{selectedFiles.map((file, index) => (
<div
key={index}
className="flex items-center justify-between p-2 bg-warm-bg rounded border border-warm-border"
>
<div className="flex items-center gap-2 flex-1 min-w-0">
<File size={16} className="text-warm-text-muted flex-shrink-0" />
<span className="text-sm text-warm-text-secondary truncate">
{file.name}
</span>
<span className="text-xs text-warm-text-muted flex-shrink-0">
({(file.size / 1024 / 1024).toFixed(2)} MB)
</span>
</div>
<button
onClick={() => removeFile(index)}
className="text-warm-text-muted hover:text-warm-state-error ml-2 flex-shrink-0"
disabled={uploadStatus === 'uploading'}
>
<X size={16} />
</button>
</div>
))}
</div>
</div>
)}
{/* Category Select */}
{selectedFiles.length > 0 && (
<div className="mb-6">
<label className="block text-sm font-medium text-warm-text-secondary mb-2">
Category
</label>
<div className="relative">
<select
value={category}
onChange={(e) => setCategory(e.target.value)}
className="w-full h-10 pl-3 pr-8 rounded-md border border-warm-border bg-white text-sm text-warm-text-secondary focus:outline-none focus:ring-1 focus:ring-warm-state-info appearance-none cursor-pointer"
disabled={uploadStatus === 'uploading'}
>
<option value="invoice">Invoice</option>
<option value="letter">Letter</option>
<option value="receipt">Receipt</option>
<option value="contract">Contract</option>
{categories
.filter((cat) => !['invoice', 'letter', 'receipt', 'contract'].includes(cat))
.map((cat) => (
<option key={cat} value={cat}>
{cat.charAt(0).toUpperCase() + cat.slice(1)}
</option>
))}
</select>
<ChevronDown
className="absolute right-2.5 top-1/2 -translate-y-1/2 pointer-events-none text-warm-text-muted"
size={14}
/>
</div>
<p className="text-xs text-warm-text-muted mt-1">
Select document type for training different models
</p>
</div>
)}
{/* Group Key Input */}
{selectedFiles.length > 0 && (
<div className="mb-6">
<label className="block text-sm font-medium text-warm-text-secondary mb-2">
Group Key (optional)
</label>
<input
type="text"
value={groupKey}
onChange={(e) => setGroupKey(e.target.value)}
placeholder="e.g., 2024-Q1, supplier-abc, project-name"
className="w-full px-3 h-10 rounded-md border border-warm-border bg-white text-sm text-warm-text-secondary focus:outline-none focus:ring-1 focus:ring-warm-state-info transition-shadow"
disabled={uploadStatus === 'uploading'}
/>
<p className="text-xs text-warm-text-muted mt-1">
Use group keys to organize documents into logical groups
</p>
</div>
)}
{/* Status Messages */}
{uploadStatus === 'success' && (
<div className="mb-4 p-3 bg-green-50 border border-green-200 rounded flex items-center gap-2">
<CheckCircle size={16} className="text-green-600" />
<span className="text-sm text-green-800">Upload successful!</span>
</div>
)}
{uploadStatus === 'error' && errorMessage && (
<div className="mb-4 p-3 bg-red-50 border border-red-200 rounded flex items-center gap-2">
<AlertCircle size={16} className="text-red-600" />
<span className="text-sm text-red-800">{errorMessage}</span>
</div>
)}
{/* Actions */}
<div className="mt-8 flex justify-end gap-3">
<Button
variant="secondary"
onClick={handleClose}
disabled={uploadStatus === 'uploading'}
>
Cancel
</Button>
<Button
onClick={handleUpload}
disabled={selectedFiles.length === 0 || uploadStatus === 'uploading'}
>
{uploadStatus === 'uploading' ? 'Uploading...' : `Upload ${selectedFiles.length > 0 ? `(${selectedFiles.length})` : ''}`}
</Button>
</div>
</div>
</div>
)
}

View File

@@ -0,0 +1,7 @@
export { useDocuments, useCategories } from './useDocuments'
export { useDocumentDetail } from './useDocumentDetail'
export { useAnnotations } from './useAnnotations'
export { useTraining, useTrainingDocuments } from './useTraining'
export { useDatasets, useDatasetDetail } from './useDatasets'
export { useAugmentation } from './useAugmentation'
export { useModels, useModelDetail, useActiveModel } from './useModels'

View File

@@ -0,0 +1,70 @@
import { useMutation, useQueryClient } from '@tanstack/react-query'
import { annotationsApi } from '../api/endpoints'
import type { CreateAnnotationRequest, AnnotationOverrideRequest } from '../api/types'
export const useAnnotations = (documentId: string) => {
const queryClient = useQueryClient()
const createMutation = useMutation({
mutationFn: (annotation: CreateAnnotationRequest) =>
annotationsApi.create(documentId, annotation),
onSuccess: () => {
queryClient.invalidateQueries({ queryKey: ['document', documentId] })
},
})
const updateMutation = useMutation({
mutationFn: ({
annotationId,
updates,
}: {
annotationId: string
updates: Partial<CreateAnnotationRequest>
}) => annotationsApi.update(documentId, annotationId, updates),
onSuccess: () => {
queryClient.invalidateQueries({ queryKey: ['document', documentId] })
},
})
const deleteMutation = useMutation({
mutationFn: (annotationId: string) =>
annotationsApi.delete(documentId, annotationId),
onSuccess: () => {
queryClient.invalidateQueries({ queryKey: ['document', documentId] })
},
})
const verifyMutation = useMutation({
mutationFn: (annotationId: string) =>
annotationsApi.verify(documentId, annotationId),
onSuccess: () => {
queryClient.invalidateQueries({ queryKey: ['document', documentId] })
},
})
const overrideMutation = useMutation({
mutationFn: ({
annotationId,
overrideData,
}: {
annotationId: string
overrideData: AnnotationOverrideRequest
}) => annotationsApi.override(documentId, annotationId, overrideData),
onSuccess: () => {
queryClient.invalidateQueries({ queryKey: ['document', documentId] })
},
})
return {
createAnnotation: createMutation.mutate,
isCreating: createMutation.isPending,
updateAnnotation: updateMutation.mutate,
isUpdating: updateMutation.isPending,
deleteAnnotation: deleteMutation.mutate,
isDeleting: deleteMutation.isPending,
verifyAnnotation: verifyMutation.mutate,
isVerifying: verifyMutation.isPending,
overrideAnnotation: overrideMutation.mutate,
isOverriding: overrideMutation.isPending,
}
}

Some files were not shown because too many files have changed in this diff Show More