# YOLO Training Configuration # Use with: yolo train data=dataset.yaml cfg=training.yaml # Model model: yolov8s.pt # Training hyperparameters epochs: 100 patience: 20 # Early stopping patience batch: 16 imgsz: 1280 # Optimizer optimizer: AdamW lr0: 0.001 # Initial learning rate lrf: 0.01 # Final learning rate factor momentum: 0.937 weight_decay: 0.0005 # Warmup warmup_epochs: 3 warmup_momentum: 0.8 warmup_bias_lr: 0.1 # Loss weights box: 7.5 # Box loss gain cls: 0.5 # Class loss gain dfl: 1.5 # DFL loss gain # Augmentation # Keep minimal for document images hsv_h: 0.0 # No hue augmentation hsv_s: 0.1 # Slight saturation hsv_v: 0.2 # Brightness variation degrees: 5.0 # Rotation ±5° translate: 0.05 # Translation scale: 0.2 # Scale ±20% shear: 0.0 # No shear perspective: 0.0 # No perspective flipud: 0.0 # No vertical flip fliplr: 0.0 # No horizontal flip mosaic: 0.0 # Disable mosaic (not suitable for documents) mixup: 0.0 # Disable mixup copy_paste: 0.0 # Disable copy-paste # Validation val: true save: true save_period: 10 cache: true # Other device: 0 # GPU device (0, 1, etc.) or 'cpu' workers: 8 project: runs/train name: invoice_fields exist_ok: true pretrained: true verbose: true