Files
invoice-master-poc-v2/tests/web/test_dataset_builder.py
2026-01-27 23:58:17 +01:00

332 lines
12 KiB
Python

"""
Tests for DatasetBuilder service.
TDD: Write tests first, then implement dataset_builder.py.
"""
import shutil
import tempfile
from pathlib import Path
from unittest.mock import MagicMock, patch
from uuid import uuid4
import pytest
from inference.data.admin_models import (
AdminAnnotation,
AdminDocument,
TrainingDataset,
FIELD_CLASSES,
)
@pytest.fixture
def tmp_admin_images(tmp_path):
"""Create mock admin images directory with sample images."""
doc_ids = [uuid4() for _ in range(5)]
for doc_id in doc_ids:
doc_dir = tmp_path / "admin_images" / str(doc_id)
doc_dir.mkdir(parents=True)
# Create 2 pages per doc
for page in range(1, 3):
img_path = doc_dir / f"page_{page}.png"
img_path.write_bytes(b"fake-png-data")
return tmp_path, doc_ids
@pytest.fixture
def mock_admin_db():
"""Mock AdminDB with dataset and document methods."""
db = MagicMock()
db.create_dataset.return_value = TrainingDataset(
dataset_id=uuid4(),
name="test-dataset",
status="building",
train_ratio=0.8,
val_ratio=0.1,
seed=42,
)
return db
@pytest.fixture
def sample_documents(tmp_admin_images):
"""Create sample AdminDocument objects."""
tmp_path, doc_ids = tmp_admin_images
docs = []
for doc_id in doc_ids:
doc = MagicMock(spec=AdminDocument)
doc.document_id = doc_id
doc.filename = f"{doc_id}.pdf"
doc.page_count = 2
doc.file_path = str(tmp_path / "admin_images" / str(doc_id))
docs.append(doc)
return docs
@pytest.fixture
def sample_annotations(sample_documents):
"""Create sample annotations for each document page."""
annotations = {}
for doc in sample_documents:
doc_anns = []
for page in range(1, 3):
ann = MagicMock(spec=AdminAnnotation)
ann.document_id = doc.document_id
ann.page_number = page
ann.class_id = 0
ann.class_name = "invoice_number"
ann.x_center = 0.5
ann.y_center = 0.3
ann.width = 0.2
ann.height = 0.05
doc_anns.append(ann)
annotations[str(doc.document_id)] = doc_anns
return annotations
class TestDatasetBuilder:
"""Tests for DatasetBuilder."""
def test_build_creates_directory_structure(
self, tmp_path, mock_admin_db, sample_documents, sample_annotations
):
"""Dataset builder should create images/ and labels/ with train/val/test subdirs."""
from inference.web.services.dataset_builder import DatasetBuilder
dataset_dir = tmp_path / "datasets" / "test"
builder = DatasetBuilder(db=mock_admin_db, base_dir=tmp_path / "datasets")
# Mock DB calls
mock_admin_db.get_documents_by_ids.return_value = sample_documents
mock_admin_db.get_annotations_for_document.side_effect = lambda doc_id: (
sample_annotations.get(str(doc_id), [])
)
dataset = mock_admin_db.create_dataset.return_value
builder.build_dataset(
dataset_id=str(dataset.dataset_id),
document_ids=[str(d.document_id) for d in sample_documents],
train_ratio=0.8,
val_ratio=0.1,
seed=42,
admin_images_dir=tmp_path / "admin_images",
)
result_dir = tmp_path / "datasets" / str(dataset.dataset_id)
for split in ["train", "val", "test"]:
assert (result_dir / "images" / split).exists()
assert (result_dir / "labels" / split).exists()
def test_build_copies_images(
self, tmp_path, mock_admin_db, sample_documents, sample_annotations
):
"""Images should be copied from admin_images to dataset folder."""
from inference.web.services.dataset_builder import DatasetBuilder
builder = DatasetBuilder(db=mock_admin_db, base_dir=tmp_path / "datasets")
mock_admin_db.get_documents_by_ids.return_value = sample_documents
mock_admin_db.get_annotations_for_document.side_effect = lambda doc_id: (
sample_annotations.get(str(doc_id), [])
)
dataset = mock_admin_db.create_dataset.return_value
result = builder.build_dataset(
dataset_id=str(dataset.dataset_id),
document_ids=[str(d.document_id) for d in sample_documents],
train_ratio=0.8,
val_ratio=0.1,
seed=42,
admin_images_dir=tmp_path / "admin_images",
)
# Check total images copied
result_dir = tmp_path / "datasets" / str(dataset.dataset_id)
total_images = sum(
len(list((result_dir / "images" / split).glob("*.png")))
for split in ["train", "val", "test"]
)
assert total_images == 10 # 5 docs * 2 pages
def test_build_generates_yolo_labels(
self, tmp_path, mock_admin_db, sample_documents, sample_annotations
):
"""YOLO label files should be generated with correct format."""
from inference.web.services.dataset_builder import DatasetBuilder
builder = DatasetBuilder(db=mock_admin_db, base_dir=tmp_path / "datasets")
mock_admin_db.get_documents_by_ids.return_value = sample_documents
mock_admin_db.get_annotations_for_document.side_effect = lambda doc_id: (
sample_annotations.get(str(doc_id), [])
)
dataset = mock_admin_db.create_dataset.return_value
builder.build_dataset(
dataset_id=str(dataset.dataset_id),
document_ids=[str(d.document_id) for d in sample_documents],
train_ratio=0.8,
val_ratio=0.1,
seed=42,
admin_images_dir=tmp_path / "admin_images",
)
result_dir = tmp_path / "datasets" / str(dataset.dataset_id)
total_labels = sum(
len(list((result_dir / "labels" / split).glob("*.txt")))
for split in ["train", "val", "test"]
)
assert total_labels == 10 # 5 docs * 2 pages
# Check label format: "class_id x_center y_center width height"
label_files = list((result_dir / "labels").rglob("*.txt"))
content = label_files[0].read_text().strip()
parts = content.split()
assert len(parts) == 5
assert int(parts[0]) == 0 # class_id
assert 0 <= float(parts[1]) <= 1 # x_center
assert 0 <= float(parts[2]) <= 1 # y_center
def test_build_generates_data_yaml(
self, tmp_path, mock_admin_db, sample_documents, sample_annotations
):
"""data.yaml should be generated with correct field classes."""
from inference.web.services.dataset_builder import DatasetBuilder
builder = DatasetBuilder(db=mock_admin_db, base_dir=tmp_path / "datasets")
mock_admin_db.get_documents_by_ids.return_value = sample_documents
mock_admin_db.get_annotations_for_document.side_effect = lambda doc_id: (
sample_annotations.get(str(doc_id), [])
)
dataset = mock_admin_db.create_dataset.return_value
builder.build_dataset(
dataset_id=str(dataset.dataset_id),
document_ids=[str(d.document_id) for d in sample_documents],
train_ratio=0.8,
val_ratio=0.1,
seed=42,
admin_images_dir=tmp_path / "admin_images",
)
yaml_path = tmp_path / "datasets" / str(dataset.dataset_id) / "data.yaml"
assert yaml_path.exists()
content = yaml_path.read_text()
assert "train:" in content
assert "val:" in content
assert "nc:" in content
assert "invoice_number" in content
def test_build_splits_documents_correctly(
self, tmp_path, mock_admin_db, sample_documents, sample_annotations
):
"""Documents should be split into train/val/test according to ratios."""
from inference.web.services.dataset_builder import DatasetBuilder
builder = DatasetBuilder(db=mock_admin_db, base_dir=tmp_path / "datasets")
mock_admin_db.get_documents_by_ids.return_value = sample_documents
mock_admin_db.get_annotations_for_document.side_effect = lambda doc_id: (
sample_annotations.get(str(doc_id), [])
)
dataset = mock_admin_db.create_dataset.return_value
builder.build_dataset(
dataset_id=str(dataset.dataset_id),
document_ids=[str(d.document_id) for d in sample_documents],
train_ratio=0.8,
val_ratio=0.1,
seed=42,
admin_images_dir=tmp_path / "admin_images",
)
# Verify add_dataset_documents was called with correct splits
call_args = mock_admin_db.add_dataset_documents.call_args
docs_added = call_args[1]["documents"] if "documents" in call_args[1] else call_args[0][1]
splits = [d["split"] for d in docs_added]
assert "train" in splits
# With 5 docs, 80/10/10 -> 4 train, 0-1 val, 0-1 test
train_count = splits.count("train")
assert train_count >= 3 # At least 3 of 5 should be train
def test_build_updates_status_to_ready(
self, tmp_path, mock_admin_db, sample_documents, sample_annotations
):
"""After successful build, dataset status should be updated to 'ready'."""
from inference.web.services.dataset_builder import DatasetBuilder
builder = DatasetBuilder(db=mock_admin_db, base_dir=tmp_path / "datasets")
mock_admin_db.get_documents_by_ids.return_value = sample_documents
mock_admin_db.get_annotations_for_document.side_effect = lambda doc_id: (
sample_annotations.get(str(doc_id), [])
)
dataset = mock_admin_db.create_dataset.return_value
builder.build_dataset(
dataset_id=str(dataset.dataset_id),
document_ids=[str(d.document_id) for d in sample_documents],
train_ratio=0.8,
val_ratio=0.1,
seed=42,
admin_images_dir=tmp_path / "admin_images",
)
mock_admin_db.update_dataset_status.assert_called_once()
call_kwargs = mock_admin_db.update_dataset_status.call_args[1]
assert call_kwargs["status"] == "ready"
assert call_kwargs["total_documents"] == 5
assert call_kwargs["total_images"] == 10
def test_build_sets_failed_on_error(
self, tmp_path, mock_admin_db
):
"""If build fails, dataset status should be set to 'failed'."""
from inference.web.services.dataset_builder import DatasetBuilder
builder = DatasetBuilder(db=mock_admin_db, base_dir=tmp_path / "datasets")
mock_admin_db.get_documents_by_ids.return_value = [] # No docs found
dataset = mock_admin_db.create_dataset.return_value
with pytest.raises(ValueError):
builder.build_dataset(
dataset_id=str(dataset.dataset_id),
document_ids=["nonexistent-id"],
train_ratio=0.8,
val_ratio=0.1,
seed=42,
admin_images_dir=tmp_path / "admin_images",
)
mock_admin_db.update_dataset_status.assert_called_once()
call_kwargs = mock_admin_db.update_dataset_status.call_args[1]
assert call_kwargs["status"] == "failed"
def test_build_with_seed_produces_deterministic_splits(
self, tmp_path, mock_admin_db, sample_documents, sample_annotations
):
"""Same seed should produce same splits."""
from inference.web.services.dataset_builder import DatasetBuilder
results = []
for _ in range(2):
builder = DatasetBuilder(db=mock_admin_db, base_dir=tmp_path / "datasets")
mock_admin_db.get_documents_by_ids.return_value = sample_documents
mock_admin_db.get_annotations_for_document.side_effect = lambda doc_id: (
sample_annotations.get(str(doc_id), [])
)
mock_admin_db.add_dataset_documents.reset_mock()
mock_admin_db.update_dataset_status.reset_mock()
dataset = mock_admin_db.create_dataset.return_value
builder.build_dataset(
dataset_id=str(dataset.dataset_id),
document_ids=[str(d.document_id) for d in sample_documents],
train_ratio=0.8,
val_ratio=0.1,
seed=42,
admin_images_dir=tmp_path / "admin_images",
)
call_args = mock_admin_db.add_dataset_documents.call_args
docs = call_args[1]["documents"] if "documents" in call_args[1] else call_args[0][1]
results.append([(d["document_id"], d["split"]) for d in docs])
assert results[0] == results[1]