Files
AmazingDoc/app/agents/vectorization_agent.py
2025-08-11 16:42:36 +02:00

44 lines
1.5 KiB
Python

# app/agents/vectorization_agent.py
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
import chromadb
client = chromadb.PersistentClient(path="./chroma_db")
vector_store = client.get_or_create_collection(name="documents")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
)
def agent_vectorize_and_store(doc_id: str, text: str, category: str, language: str):
"""
Agent 4: Vectorizes a document and stores it in ChromaDB.
"""
print(f"--- [Background Task] Starting vectorization (ID: {doc_id})...")
try:
return
chunks = text_splitter.split_text(text)
if not chunks:
print(f"--- [Background Task] document {doc_id} has no text to vectorize.")
return
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
metadatas = [{"doc_id": doc_id, "category": category, "language": language, "chunk_number": i} for i in
range(len(chunks))]
embeddings = embedding_model.embed_documents(chunks)
vector_store.add(
ids=chunk_ids,
embeddings=embeddings,
documents=chunks,
metadatas=metadatas
)
print(f"--- [Background Task] Document {doc_id} vectorized and stored successfully.")
except Exception as e:
print(f"--- [background Task] Vectorization failed (ID: {doc_id}): {e}")