Prepare vectorizes
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
# app/agents/__init__.py
|
||||
from .classification_agent import agent_classify_document_from_image
|
||||
from .receipt_agent import agent_extract_receipt_info
|
||||
from .invoice_agent import agent_extract_invoice_info
|
||||
from .invoice_agent import agent_extract_invoice_info
|
||||
from .vectorization_agent import agent_vectorize_and_store
|
||||
@@ -1,38 +1,43 @@
|
||||
# app/agents/vectorization_agent.py
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from ..core.vector_store import vector_store, embedding_model
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
|
||||
import chromadb
|
||||
|
||||
client = chromadb.PersistentClient(path="./chroma_db")
|
||||
vector_store = client.get_or_create_collection(name="documents")
|
||||
|
||||
# Initialize the text splitter to divide long documents into smaller chunks
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=500,
|
||||
chunk_overlap=50,
|
||||
chunk_size=1000,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
|
||||
def agent_vectorize_and_store(doc_id: str, text: str, category: str):
|
||||
"""Agent 4: Vectorization and Storage (Real Implementation)"""
|
||||
print(f"--- [Agent 4] Vectorizing document (ID: {doc_id})...")
|
||||
def agent_vectorize_and_store(doc_id: str, text: str, category: str, language: str):
|
||||
"""
|
||||
Agent 4: Vectorizes a document and stores it in ChromaDB.
|
||||
"""
|
||||
print(f"--- [Background Task] Starting vectorization (ID: {doc_id})...")
|
||||
|
||||
# 1. Split the document text into chunks
|
||||
chunks = text_splitter.split_text(text)
|
||||
print(f"--- [Agent 4] Document split into {len(chunks)} chunks.")
|
||||
|
||||
if not chunks:
|
||||
print(f"--- [Agent 4] Document is empty, skipping vectorization.")
|
||||
try:
|
||||
return
|
||||
|
||||
# 2. Create a unique ID and metadata for each chunk
|
||||
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
|
||||
metadatas = [{"doc_id": doc_id, "category": category, "chunk_number": i} for i in range(len(chunks))]
|
||||
chunks = text_splitter.split_text(text)
|
||||
if not chunks:
|
||||
print(f"--- [Background Task] document {doc_id} has no text to vectorize.")
|
||||
return
|
||||
|
||||
# 3. Use an embedding model to generate vectors for all chunks
|
||||
embeddings = embedding_model.embed_documents(chunks)
|
||||
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
|
||||
metadatas = [{"doc_id": doc_id, "category": category, "language": language, "chunk_number": i} for i in
|
||||
range(len(chunks))]
|
||||
|
||||
# 4. Add the IDs, vectors, metadata, and text chunks to ChromaDB
|
||||
vector_store.add(
|
||||
ids=chunk_ids,
|
||||
embeddings=embeddings,
|
||||
documents=chunks,
|
||||
metadatas=metadatas
|
||||
)
|
||||
embeddings = embedding_model.embed_documents(chunks)
|
||||
|
||||
print(f"--- [Agent 4] document {doc_id} stored in ChromaDB。")
|
||||
vector_store.add(
|
||||
ids=chunk_ids,
|
||||
embeddings=embeddings,
|
||||
documents=chunks,
|
||||
metadatas=metadatas
|
||||
)
|
||||
print(f"--- [Background Task] Document {doc_id} vectorized and stored successfully.")
|
||||
except Exception as e:
|
||||
print(f"--- [background Task] Vectorization failed (ID: {doc_id}): {e}")
|
||||
|
||||
23
app/core/ocr.py
Normal file
23
app/core/ocr.py
Normal file
@@ -0,0 +1,23 @@
|
||||
import pytesseract
|
||||
from PIL import Image
|
||||
from typing import List
|
||||
|
||||
|
||||
def extract_text_from_images(images: List[Image.Image]) -> str:
|
||||
"""
|
||||
使用Tesseract OCR从一系列图片中提取并合并所有文本。
|
||||
"""
|
||||
print("--- [Core OCR] 正在从图片中提取文本用于向量化...")
|
||||
full_text = []
|
||||
for img in images:
|
||||
try:
|
||||
# lang='chi_sim+eng' 表示同时识别简体中文和英文
|
||||
text = pytesseract.image_to_string(img, lang='chi_sim+eng')
|
||||
full_text.append(text)
|
||||
except Exception as e:
|
||||
print(f"--- [Core OCR] 单页处理失败: {e}")
|
||||
continue
|
||||
|
||||
combined_text = "\n\n--- Page Break ---\n\n".join(full_text)
|
||||
print("--- [Core OCR] 文本提取成功。")
|
||||
return combined_text
|
||||
@@ -1,8 +1,6 @@
|
||||
# app/routers/documents.py
|
||||
import uuid
|
||||
import mimetypes
|
||||
import base64
|
||||
from fastapi import APIRouter, UploadFile, File, HTTPException
|
||||
from fastapi import APIRouter, UploadFile, File, HTTPException, BackgroundTasks
|
||||
from typing import Dict, Any, List
|
||||
from fastapi.concurrency import run_in_threadpool
|
||||
from PIL import Image
|
||||
@@ -10,6 +8,7 @@ from io import BytesIO
|
||||
|
||||
from .. import agents
|
||||
from ..core.pdf_processor import convert_pdf_to_images, image_to_base64_str
|
||||
from ..core.ocr import extract_text_from_images
|
||||
|
||||
# Create an APIRouter instance
|
||||
router = APIRouter(
|
||||
@@ -46,8 +45,12 @@ async def multimodal_process_pipeline(doc_id: str, image: Image.Image, page_num:
|
||||
db_results[final_result["doc_id"]] = final_result
|
||||
return final_result
|
||||
|
||||
@router.post("/process", summary="upload and process a document")
|
||||
async def upload_and_process_document(file: UploadFile = File(...)):
|
||||
|
||||
@router.post("/process", summary="Upload and Process Document")
|
||||
async def upload_and_process_document(
|
||||
file: UploadFile = File(...),
|
||||
background_tasks: BackgroundTasks = BackgroundTasks()
|
||||
):
|
||||
if not file.filename:
|
||||
raise HTTPException(status_code=400, detail="No file provided.")
|
||||
|
||||
@@ -57,7 +60,7 @@ async def upload_and_process_document(file: UploadFile = File(...)):
|
||||
|
||||
try:
|
||||
file_type = mimetypes.guess_type(file.filename)[0]
|
||||
print(f"File type: {file_type}")
|
||||
print(f"Detected file type: {file_type}")
|
||||
|
||||
images: List[Image.Image] = []
|
||||
if file_type == 'application/pdf':
|
||||
@@ -84,18 +87,28 @@ async def upload_and_process_document(file: UploadFile = File(...)):
|
||||
elif category == "INVOICE":
|
||||
extraction_result = await agents.agent_extract_invoice_info(images_base64, language)
|
||||
else:
|
||||
print(f"The document is classified as '{category}',skipping extraction。")
|
||||
print(f"Document classified as '{category}',skipping extraction。")
|
||||
|
||||
# 3. Return a unified result
|
||||
final_result = {
|
||||
"doc_id": doc_id,
|
||||
"message": "Document processing initiated. Vectorization is running in the background.",
|
||||
"page_count": len(images),
|
||||
"category": category,
|
||||
"language": language,
|
||||
"extraction_data": extraction_result.dict() if extraction_result else None,
|
||||
"status": "Processed"
|
||||
"status": "Processing"
|
||||
}
|
||||
db_results[doc_id] = final_result
|
||||
|
||||
full_text = await run_in_threadpool(extract_text_from_images, images)
|
||||
background_tasks.add_task(
|
||||
agents.agent_vectorize_and_store,
|
||||
doc_id,
|
||||
full_text,
|
||||
category,
|
||||
language
|
||||
)
|
||||
print("--- [Main] Vectorization job added to background tasks.")
|
||||
|
||||
return final_result
|
||||
|
||||
except Exception as e:
|
||||
|
||||
BIN
chroma_db/chroma.sqlite3
Normal file
BIN
chroma_db/chroma.sqlite3
Normal file
Binary file not shown.
Reference in New Issue
Block a user