Init
This commit is contained in:
2
.idea/AmazingDoc.iml
generated
2
.idea/AmazingDoc.iml
generated
@@ -5,7 +5,7 @@
|
||||
</component>
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="jdk" jdkName="AmazingDoc" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="PyDocumentationSettings">
|
||||
|
||||
2
.idea/misc.xml
generated
2
.idea/misc.xml
generated
@@ -3,5 +3,5 @@
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Python 3.13" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.13" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="AmazingDoc" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
@@ -1,51 +0,0 @@
|
||||
# app/agents.py
|
||||
import asyncio
|
||||
import random
|
||||
from .schemas import ReceiptInfo, InvoiceInfo, ReceiptItem
|
||||
|
||||
# --- Agent核心功能 (占位符/模拟实现) ---
|
||||
# 在实际应用中,这些函数将被替换为调用LangChain和LLM的真实逻辑。
|
||||
|
||||
async def agent_classify_document(text: str) -> str:
|
||||
"""Agent 1: 文件分类 (模拟)"""
|
||||
print("--- [Agent 1] 正在进行文档分类...")
|
||||
await asyncio.sleep(0.5) # 模拟网络延迟
|
||||
doc_types = ["信件", "收据", "发票", "合约"]
|
||||
if "发票" in text: return "发票"
|
||||
if "收据" in text or "小票" in text: return "收据"
|
||||
if "合同" in text or "协议" in text: return "合约"
|
||||
return random.choice(doc_types)
|
||||
|
||||
async def agent_extract_receipt_info(text: str) -> ReceiptInfo:
|
||||
"""Agent 2: 收据信息提取 (模拟)"""
|
||||
print("--- [Agent 2] 正在提取收据信息...")
|
||||
await asyncio.sleep(1) # 模拟LLM处理时间
|
||||
return ReceiptInfo(
|
||||
merchant_name="模拟超市",
|
||||
transaction_date="2025-08-10",
|
||||
total_amount=198.50,
|
||||
items=[ReceiptItem(name="牛奶", quantity=2, price=11.5)]
|
||||
)
|
||||
|
||||
async def agent_extract_invoice_info(text: str) -> InvoiceInfo:
|
||||
"""Agent 3: 发票信息提取 (模拟)"""
|
||||
print("--- [Agent 3] 正在提取发票信息...")
|
||||
await asyncio.sleep(1) # 模拟LLM处理时间
|
||||
return InvoiceInfo(
|
||||
invoice_number="INV123456789",
|
||||
issue_date="2025-08-09",
|
||||
seller_name="模拟科技有限公司",
|
||||
total_amount_in_figures=12000.00
|
||||
)
|
||||
|
||||
async def agent_vectorize_and_store(doc_id: str, text: str, category: str, vector_db: dict):
|
||||
"""Agent 4: 向量化并存储 (模拟)"""
|
||||
print(f"--- [Agent 4] 正在向量化文档 (ID: {doc_id})...")
|
||||
await asyncio.sleep(0.5)
|
||||
chunks = [text[i:i+200] for i in range(0, len(text), 200)]
|
||||
vector_db[doc_id] = {
|
||||
"metadata": {"category": category, "chunk_count": len(chunks)},
|
||||
"content_chunks": chunks,
|
||||
"vectors": [random.random() for _ in range(len(chunks) * 128)]
|
||||
}
|
||||
print(f"--- [Agent 4] 文档 {doc_id} 已存入向量数据库。")
|
||||
@@ -1,7 +1,4 @@
|
||||
# app/agents/__init__.py
|
||||
|
||||
# This file makes it easy to import all agents from the 'agents' package.
|
||||
# We are importing the function with its correct name now.
|
||||
from .classification_agent import agent_classify_document_from_text
|
||||
from .classification_agent import agent_classify_document_from_image
|
||||
from .receipt_agent import agent_extract_receipt_info
|
||||
from .invoice_agent import agent_extract_invoice_info
|
||||
@@ -1,42 +1,48 @@
|
||||
# app/agents/classification_agent.py
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.output_parsers import PydanticOutputParser
|
||||
from langchain.prompts import PromptTemplate
|
||||
from ..core.llm import llm
|
||||
from ..schemas import ClassificationResult # 导入新的Schema
|
||||
from ..schemas import ClassificationResult
|
||||
from typing import List
|
||||
|
||||
# 1. 设置PydanticOutputParser
|
||||
parser = PydanticOutputParser(pydantic_object=ClassificationResult)
|
||||
|
||||
# 2. 更新Prompt模板以要求语言,并包含格式指令
|
||||
classification_template = """
|
||||
You are a professional document analysis assistant. Please perform two tasks on the following text:
|
||||
1. Determine its category. The category must be one of: ["LETTER", "INVOICE", "RECEIPT", "CONTRACT", "OTHER"].
|
||||
2. Detect the primary language of the text. Return the language as a two-letter ISO 639-1 code (e.g., "en" for English, "zh" for Chinese, "es" for Spanish).
|
||||
You are a professional document analysis assistant. The following images represent pages from a single document. Please perform two tasks based on all pages provided:
|
||||
1. Determine the overall category of the document. The category must be one of: ["LETTER", "INVOICE", "RECEIPT", "CONTRACT", "OTHER"].
|
||||
2. Detect the primary language of the document. Return the language as a two-letter ISO 639-1 code (e.g., "en" for English, "zh" for Chinese).
|
||||
|
||||
Please provide a single response for the entire document in the requested JSON format.
|
||||
|
||||
{format_instructions}
|
||||
|
||||
[Document Text Start]
|
||||
{document_text}
|
||||
[Document Text End]
|
||||
"""
|
||||
|
||||
classification_prompt = PromptTemplate(
|
||||
template=classification_template,
|
||||
input_variables=["document_text"],
|
||||
input_variables=[],
|
||||
partial_variables={"format_instructions": parser.get_format_instructions()},
|
||||
)
|
||||
|
||||
# 3. 创建新的LangChain链
|
||||
classification_chain = classification_prompt | llm | parser
|
||||
|
||||
async def agent_classify_document_from_image(images_base64: List[str]) -> ClassificationResult:
|
||||
"""Agent 1: Classifies an entire document (multiple pages) and detects its language from a list of images."""
|
||||
print(f"--- [Agent 1] Calling multimodal LLM for classification of a {len(images_base64)}-page document...")
|
||||
|
||||
async def agent_classify_document_from_text(text: str) -> ClassificationResult:
|
||||
"""Agent 1: Classify document and detect language from OCR-extracted text."""
|
||||
print("--- [Agent 1] Calling LLM for classification and language detection...")
|
||||
if not text.strip():
|
||||
print("--- [Agent 1] Text content is empty, classifying as 'OTHER'.")
|
||||
return ClassificationResult(category="OTHER", language="unknown")
|
||||
prompt_text = await classification_prompt.aformat()
|
||||
|
||||
# 调用链并返回Pydantic对象
|
||||
result = await classification_chain.ainvoke({"document_text": text})
|
||||
# Create a list of content parts, starting with the text prompt
|
||||
content_parts = [{"type": "text", "text": prompt_text}]
|
||||
|
||||
# Add each image to the content list
|
||||
for image_base64 in images_base64:
|
||||
content_parts.append({
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/png;base64,{image_base64}"},
|
||||
})
|
||||
|
||||
msg = HumanMessage(content=content_parts)
|
||||
|
||||
chain = llm | parser
|
||||
result = await chain.ainvoke([msg])
|
||||
return result
|
||||
|
||||
@@ -4,10 +4,10 @@ from langchain_core.output_parsers import PydanticOutputParser
|
||||
from langchain.prompts import PromptTemplate
|
||||
from ..core.llm import llm
|
||||
from ..schemas import InvoiceInfo
|
||||
from typing import List
|
||||
|
||||
parser = PydanticOutputParser(pydantic_object=InvoiceInfo)
|
||||
|
||||
# The prompt now includes the detailed rules for each field using snake_case.
|
||||
invoice_template = """
|
||||
You are an expert data entry clerk AI. Your primary goal is to extract information from an invoice image with the highest possible accuracy.
|
||||
The document's primary language is '{language}'.
|
||||
@@ -30,6 +30,9 @@ Carefully analyze the invoice image and extract the following fields according t
|
||||
- `customer_address_region`: This is the receiver's region. If not found, find the region of the extracted city or country. If unclear, leave as an empty string.
|
||||
- `customer_address_care_of`: This is the receiver's 'care of' (c/o) line. If not found or unclear, leave as an empty string.
|
||||
- `billo_id`: To find this, think step-by-step: 1. Find the customer_address. 2. Scan the address for a pattern of three letters, an optional space, three digits, an optional dash, and one alphanumeric character (e.g., 'ABC 123-X' or 'DEF 456Z'). 3. If found, extract it. If not found or unclear, leave as an empty string.
|
||||
- `bank_giro`: If found, extract the bank giro number. It often follows patterns like 'ddd-dddd', 'dddd-dddd', or 'dddddddd #41#'. If not found or unclear, leave as an empty string.
|
||||
- `plus_giro`: If found, extract the plus giro number. It often follows patterns like 'ddddddd-d #16#', 'ddddddd-d', or 'ddd dd dd-d'. If not found or unclear, leave as an empty string.
|
||||
- `customer_ssn`: If found, extract the customer social security number (personnummer). It follows the pattern 'YYYYMMDD-XXXX' or 'YYMMDD-XXXX'. If not found or unclear, leave as an empty string.
|
||||
- `line_items`: Extract all line items from the invoice. For each item, extract the `description`, `quantity`, `unit_price`, and `total_price`. If a value is not present, leave it as null.
|
||||
|
||||
## Example:
|
||||
@@ -41,33 +44,31 @@ If the invoice shows a line item "Consulting Services | 2 hours | $100.00/hr | $
|
||||
"unit_price": 100.00,
|
||||
"total_price": 200.00
|
||||
}}
|
||||
|
||||
```
|
||||
Your Task:
|
||||
Now, analyze the provided image and output the full JSON object according to the format below.
|
||||
{format_instructions}
|
||||
"""
|
||||
|
||||
invoice_prompt = PromptTemplate(
|
||||
template=invoice_template,
|
||||
input_variables=["language"],
|
||||
partial_variables={"format_instructions": parser.get_format_instructions()},
|
||||
partial_variables={"format_instructions": parser.get_format_instructions()}
|
||||
)
|
||||
|
||||
async def agent_extract_invoice_info(image_base64: str, language: str) -> InvoiceInfo:
|
||||
"""Agent 3: Extracts invoice information from an image, aware of the document's language."""
|
||||
async def agent_extract_invoice_info(images_base64: List[str], language: str) -> InvoiceInfo:
|
||||
"""Agent 3: Extracts invoice information from a list of images, aware of the document's language."""
|
||||
print(f"--- [Agent 3] Calling multimodal LLM to extract invoice info (Language: {language})...")
|
||||
|
||||
prompt_text = await invoice_prompt.aformat(language=language)
|
||||
|
||||
msg = HumanMessage(
|
||||
content=[
|
||||
{"type": "text", "text": prompt_text},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": f"data:image/png;base64,{image_base64}",
|
||||
},
|
||||
]
|
||||
)
|
||||
content_parts = [{"type": "text", "text": prompt_text}]
|
||||
for image_base64 in images_base64:
|
||||
content_parts.append({
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/png;base64,{image_base64}"},
|
||||
})
|
||||
|
||||
msg = HumanMessage(content=content_parts)
|
||||
|
||||
chain = llm | parser
|
||||
invoice_info = await chain.ainvoke([msg])
|
||||
|
||||
@@ -4,15 +4,15 @@ from langchain_core.output_parsers import PydanticOutputParser
|
||||
from langchain.prompts import PromptTemplate
|
||||
from ..core.llm import llm
|
||||
from ..schemas import ReceiptInfo
|
||||
from typing import List
|
||||
|
||||
parser = PydanticOutputParser(pydantic_object=ReceiptInfo)
|
||||
|
||||
# 更新Prompt模板以包含语言信息
|
||||
receipt_template = """
|
||||
You are a highly accurate receipt information extraction robot.
|
||||
The document's primary language is '{language}'.
|
||||
Please extract all key information from the following receipt image.
|
||||
If some information is not present in the image, leave it as null.
|
||||
Please extract all key information from the following receipt images, which belong to a single document.
|
||||
If some information is not present in the images, leave it as null.
|
||||
Please strictly follow the JSON format below, without adding any extra explanations or comments.
|
||||
|
||||
{format_instructions}
|
||||
@@ -25,22 +25,21 @@ receipt_prompt = PromptTemplate(
|
||||
)
|
||||
|
||||
|
||||
async def agent_extract_receipt_info(image_base64: str, language: str) -> ReceiptInfo:
|
||||
"""Agent 2: Extracts receipt information from an image, aware of the document's language."""
|
||||
async def agent_extract_receipt_info(images_base64: List[str], language: str) -> ReceiptInfo:
|
||||
"""Agent 2: Extracts receipt information from a list of images, aware of the document's language."""
|
||||
print(f"--- [Agent 2] Calling multimodal LLM to extract receipt info (Language: {language})...")
|
||||
|
||||
prompt_text = await receipt_prompt.aformat(language=language)
|
||||
|
||||
msg = HumanMessage(
|
||||
content=[
|
||||
{"type": "text", "text": prompt_text},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": f"data:image/png;base64,{image_base64}",
|
||||
},
|
||||
]
|
||||
)
|
||||
content_parts = [{"type": "text", "text": prompt_text}]
|
||||
for image_base64 in images_base64:
|
||||
content_parts.append({
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/png;base64,{image_base64}"},
|
||||
})
|
||||
|
||||
msg = HumanMessage(content=content_parts)
|
||||
|
||||
chain = llm | parser
|
||||
receipt_info = await chain.ainvoke([msg])
|
||||
return receipt_info
|
||||
return receipt_info
|
||||
@@ -2,32 +2,32 @@
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from ..core.vector_store import vector_store, embedding_model
|
||||
|
||||
# 初始化文本分割器,用于将长文档切成小块
|
||||
# Initialize the text splitter to divide long documents into smaller chunks
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=500, # 每个块的大小(字符数)
|
||||
chunk_overlap=50, # 块之间的重叠部分
|
||||
chunk_size=500,
|
||||
chunk_overlap=50,
|
||||
)
|
||||
|
||||
def agent_vectorize_and_store(doc_id: str, text: str, category: str):
|
||||
"""Agent 4: 向量化并存储 (真实实现)"""
|
||||
print(f"--- [Agent 4] 正在向量化文档 (ID: {doc_id})...")
|
||||
"""Agent 4: Vectorization and Storage (Real Implementation)"""
|
||||
print(f"--- [Agent 4] Vectorizing document (ID: {doc_id})...")
|
||||
|
||||
# 1. 将文档文本分割成块
|
||||
# 1. Split the document text into chunks
|
||||
chunks = text_splitter.split_text(text)
|
||||
print(f"--- [Agent 4] 文档被切分为 {len(chunks)} 个块。")
|
||||
print(f"--- [Agent 4] Document split into {len(chunks)} chunks.")
|
||||
|
||||
if not chunks:
|
||||
print(f"--- [Agent 4] 文档内容为空,跳过向量化。")
|
||||
print(f"--- [Agent 4] Document is empty, skipping vectorization.")
|
||||
return
|
||||
|
||||
# 2. 为每个块创建唯一的ID和元数据
|
||||
# 2. Create a unique ID and metadata for each chunk
|
||||
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
|
||||
metadatas = [{"doc_id": doc_id, "category": category, "chunk_number": i} for i in range(len(chunks))]
|
||||
|
||||
# 3. 使用嵌入模型为所有块生成向量
|
||||
# 3. Use an embedding model to generate vectors for all chunks
|
||||
embeddings = embedding_model.embed_documents(chunks)
|
||||
|
||||
# 4. 将ID、向量、元数据和文本块本身添加到ChromaDB
|
||||
# 4. Add the IDs, vectors, metadata, and text chunks to ChromaDB
|
||||
vector_store.add(
|
||||
ids=chunk_ids,
|
||||
embeddings=embeddings,
|
||||
@@ -35,4 +35,4 @@ def agent_vectorize_and_store(doc_id: str, text: str, category: str):
|
||||
metadatas=metadatas
|
||||
)
|
||||
|
||||
print(f"--- [Agent 4] 文档 {doc_id} 的向量已存入ChromaDB。")
|
||||
print(f"--- [Agent 4] document {doc_id} stored in ChromaDB。")
|
||||
|
||||
18
app/core/callbacks.py
Normal file
18
app/core/callbacks.py
Normal file
@@ -0,0 +1,18 @@
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from langchain_core.outputs import LLMResult
|
||||
from typing import Any, Dict
|
||||
|
||||
class TokenUsageCallbackHandler(BaseCallbackHandler):
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
token_usage = response.llm_output.get('token_usage', {})
|
||||
|
||||
if token_usage:
|
||||
prompt_tokens = token_usage.get('prompt_tokens', 0)
|
||||
completion_tokens = token_usage.get('completion_tokens', 0)
|
||||
total_tokens = token_usage.get('total_tokens', 0)
|
||||
|
||||
print("--- [Token Usage] ---")
|
||||
print(f" Prompt Tokens: {prompt_tokens}")
|
||||
print(f" Completion Tokens: {completion_tokens}")
|
||||
print(f" Total Tokens: {total_tokens}")
|
||||
print("---------------------")
|
||||
@@ -1,45 +1,33 @@
|
||||
# app/core/llm.py
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from langchain_openai import AzureChatOpenAI, ChatOpenAI
|
||||
from .callbacks import TokenUsageCallbackHandler
|
||||
|
||||
# 加载.env文件中的环境变量
|
||||
load_dotenv()
|
||||
|
||||
# 获取配置的LLM供应商
|
||||
LLM_PROVIDER = os.getenv("LLM_PROVIDER", "openai").lower()
|
||||
|
||||
llm = None
|
||||
|
||||
print(f"--- [Core] Initializing LLM with provider: {LLM_PROVIDER} ---")
|
||||
|
||||
if LLM_PROVIDER == "azure":
|
||||
# --- Azure OpenAI 配置 ---
|
||||
required_vars = [
|
||||
"AZURE_OPENAI_ENDPOINT", "AZURE_OPENAI_API_KEY",
|
||||
"OPENAI_API_VERSION", "AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"
|
||||
]
|
||||
if not all(os.getenv(var) for var in required_vars):
|
||||
raise ValueError("One or more Azure OpenAI environment variables for chat are not set.")
|
||||
token_callback = TokenUsageCallbackHandler()
|
||||
|
||||
if LLM_PROVIDER == "azure":
|
||||
llm = AzureChatOpenAI(
|
||||
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("OPENAI_API_VERSION"),
|
||||
azure_deployment=os.getenv("AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"),
|
||||
temperature=0,
|
||||
callbacks=[token_callback]
|
||||
)
|
||||
|
||||
elif LLM_PROVIDER == "openai":
|
||||
# --- 标准 OpenAI 配置 ---
|
||||
if not os.getenv("OPENAI_API_KEY"):
|
||||
raise ValueError("OPENAI_API_KEY is not set for the 'openai' provider.")
|
||||
|
||||
llm = ChatOpenAI(
|
||||
api_key=os.getenv("OPENAI_API_KEY"),
|
||||
model_name=os.getenv("OPENAI_MODEL_NAME", "gpt-4o"),
|
||||
temperature=0,
|
||||
callbacks=[token_callback]
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unsupported LLM_PROVIDER: {LLM_PROVIDER}. Please use 'azure' or 'openai'.")
|
||||
raise ValueError(f"Unsupported LLM_PROVIDER: {LLM_PROVIDER}. Please use 'azure' or 'openai'.")
|
||||
|
||||
@@ -1,27 +0,0 @@
|
||||
# app/core/ocr.py
|
||||
import pytesseract
|
||||
from PIL import Image
|
||||
|
||||
|
||||
# 注意: 您需要先在您的系统中安装Google的Tesseract OCR引擎。
|
||||
# 详情请参考之前的安装说明。
|
||||
|
||||
def extract_text_from_image(image: Image.Image) -> str:
|
||||
"""
|
||||
使用Tesseract OCR从Pillow Image对象中提取文本。
|
||||
|
||||
参数:
|
||||
image: Pillow Image对象。
|
||||
|
||||
返回:
|
||||
从图片中提取出的字符串文本。
|
||||
"""
|
||||
try:
|
||||
print("--- [Core OCR] 正在从图片中提取文本用于分类...")
|
||||
# lang='chi_sim+eng' 表示同时识别简体中文和英文
|
||||
text = pytesseract.image_to_string(image, lang='chi_sim+eng')
|
||||
print("--- [Core OCR] 文本提取成功。")
|
||||
return text
|
||||
except Exception as e:
|
||||
print(f"--- [Core OCR] OCR处理失败: {e}")
|
||||
raise IOError(f"OCR processing failed: {e}")
|
||||
@@ -5,39 +5,20 @@ from io import BytesIO
|
||||
from typing import List
|
||||
import base64
|
||||
|
||||
|
||||
# 注意: 您需要安装Poppler。
|
||||
# - macOS: brew install poppler
|
||||
# - Ubuntu/Debian: sudo apt-get install poppler-utils
|
||||
# - Windows: 下载Poppler并将其bin目录添加到系统PATH。
|
||||
|
||||
def convert_pdf_to_images(pdf_bytes: bytes) -> List[Image.Image]:
|
||||
"""将PDF文件的字节流转换为Pillow Image对象列表。"""
|
||||
try:
|
||||
print("--- [Core PDF] 正在将PDF转换为图片...")
|
||||
print("--- [Core PDF] Converting PDF to images...")
|
||||
|
||||
# --- 新增代码开始 ---
|
||||
# 在这里直接指定您电脑上Poppler的bin目录路径
|
||||
# 请确保将下面的示例路径替换为您的真实路径
|
||||
poppler_path = r"C:\ProgramData\chocolatey\lib\poppler\tools\Library\bin"
|
||||
# --- 新增代码结束 ---
|
||||
|
||||
# --- 修改的代码开始 ---
|
||||
# 在调用时传入poppler_path参数
|
||||
images = convert_from_bytes(pdf_bytes)
|
||||
# --- 修改的代码结束 ---
|
||||
|
||||
print(f"--- [Core PDF] 转换成功,共 {len(images)} 页。")
|
||||
print(f"--- [Core PDF] converted PDF to images,total {len(images)} pages。")
|
||||
return images
|
||||
except Exception as e:
|
||||
print(f"--- [Core PDF] PDF转换失败: {e}")
|
||||
# 增加一个更友好的错误提示
|
||||
print("--- [Core PDF] 请确认您已在系统中正确安装Poppler,并在上面的代码中指定了正确的poppler_path。")
|
||||
print(f"--- [Core PDF] PDF conversion failed: {e}")
|
||||
raise IOError(f"PDF to image conversion failed: {e}")
|
||||
|
||||
|
||||
def image_to_base64_str(image: Image.Image) -> str:
|
||||
"""将Pillow Image对象转换为Base64编码的字符串。"""
|
||||
buffered = BytesIO()
|
||||
image.save(buffered, format="PNG")
|
||||
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
||||
@@ -4,10 +4,8 @@ import chromadb
|
||||
from dotenv import load_dotenv
|
||||
from langchain_openai import AzureOpenAIEmbeddings, OpenAIEmbeddings
|
||||
|
||||
# 加载.env文件中的环境变量
|
||||
load_dotenv()
|
||||
|
||||
# 获取配置的LLM供应商
|
||||
LLM_PROVIDER = os.getenv("LLM_PROVIDER", "openai").lower()
|
||||
|
||||
embedding_model = None
|
||||
@@ -15,7 +13,6 @@ embedding_model = None
|
||||
print(f"--- [Core] Initializing Embeddings with provider: {LLM_PROVIDER} ---")
|
||||
|
||||
if LLM_PROVIDER == "azure":
|
||||
# --- Azure OpenAI 配置 ---
|
||||
required_vars = [
|
||||
"AZURE_OPENAI_ENDPOINT", "AZURE_OPENAI_API_KEY",
|
||||
"OPENAI_API_VERSION", "AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME"
|
||||
@@ -31,7 +28,6 @@ if LLM_PROVIDER == "azure":
|
||||
)
|
||||
|
||||
elif LLM_PROVIDER == "openai":
|
||||
# --- 标准 OpenAI 配置 ---
|
||||
if not os.getenv("OPENAI_API_KEY"):
|
||||
raise ValueError("OPENAI_API_KEY is not set for the 'openai' provider.")
|
||||
|
||||
@@ -44,7 +40,6 @@ else:
|
||||
raise ValueError(f"Unsupported LLM_PROVIDER: {LLM_PROVIDER}. Please use 'azure' or 'openai'.")
|
||||
|
||||
|
||||
# 初始化ChromaDB客户端 (无变化)
|
||||
client = chromadb.PersistentClient(path="./chroma_db")
|
||||
vector_store = client.get_or_create_collection(
|
||||
name="documents",
|
||||
|
||||
10
app/main.py
10
app/main.py
@@ -1,20 +1,18 @@
|
||||
# app/main.py
|
||||
import uvicorn
|
||||
from fastapi import FastAPI
|
||||
from .routers import documents # 导入我们新的文档路由
|
||||
from .routers import documents
|
||||
|
||||
app = FastAPI(
|
||||
title="混合模式文档处理AI Agent",
|
||||
description="一个用于自动分类、提取和处理文档的AI应用框架。",
|
||||
version="0.9.0", # 版本升级: 模块化API路由
|
||||
title="Hybrid Mode Document Processing AI Agent",
|
||||
description="An AI application framework for automatic document classification, extraction, and processing.",
|
||||
version="0.9.0",
|
||||
)
|
||||
|
||||
# 将文档路由包含到主应用中
|
||||
app.include_router(documents.router)
|
||||
|
||||
@app.get("/", tags=["Root"])
|
||||
async def read_root():
|
||||
"""一个简单的根端点,用于检查服务是否正在运行。"""
|
||||
return {"message": "Welcome to the Document Processing AI Agent API!"}
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -10,64 +10,54 @@ from io import BytesIO
|
||||
|
||||
from .. import agents
|
||||
from ..core.pdf_processor import convert_pdf_to_images, image_to_base64_str
|
||||
from ..core.ocr import extract_text_from_image
|
||||
|
||||
# 创建一个APIRouter实例
|
||||
# Create an APIRouter instance
|
||||
router = APIRouter(
|
||||
prefix="/documents", # 为这个路由下的所有路径添加前缀
|
||||
tags=["Document Processing"], # 在API文档中为这组端点添加标签
|
||||
prefix="/documents",
|
||||
tags=["Document Processing"],
|
||||
)
|
||||
|
||||
# 模拟一个SQL数据库来存储最终结果
|
||||
# Simulate an SQL database to store the final results
|
||||
db_results: Dict[str, Any] = {}
|
||||
|
||||
|
||||
async def hybrid_process_pipeline(doc_id: str, image: Image.Image, page_num: int):
|
||||
"""混合处理流水线"""
|
||||
ocr_text = await run_in_threadpool(extract_text_from_image, image)
|
||||
|
||||
classification_result = await agents.agent_classify_document_from_text(ocr_text)
|
||||
async def multimodal_process_pipeline(doc_id: str, image: Image.Image, page_num: int):
|
||||
image_base64 = await run_in_threadpool(image_to_base64_str, image)
|
||||
classification_result = await agents.agent_classify_document_from_image(image_base64)
|
||||
category = classification_result.category
|
||||
language = classification_result.language
|
||||
print(f"Document page {page_num} classified as: {category}, Language: {language}")
|
||||
|
||||
extraction_result = None
|
||||
if category in ["RECEIPT", "INVOICE"]:
|
||||
image_base64 = await run_in_threadpool(image_to_base64_str, image)
|
||||
if category == "RECEIPT":
|
||||
# 将语言传递给提取Agent
|
||||
extraction_result = await agents.agent_extract_receipt_info(image_base64, language)
|
||||
elif category == "INVOICE":
|
||||
# 将语言传递给提取Agent
|
||||
extraction_result = await agents.agent_extract_invoice_info(image_base64, language)
|
||||
else:
|
||||
print(f"Document classified as '{category}', skipping high-precision extraction.")
|
||||
print(f"Document classified as '{category}', skipping extraction.")
|
||||
|
||||
final_result = {
|
||||
"doc_id": f"{doc_id}_page_{page_num}",
|
||||
"category": category,
|
||||
"language": language,
|
||||
"ocr_text_for_classification": ocr_text,
|
||||
"extraction_data": extraction_result.dict() if extraction_result else None,
|
||||
"status": "Processed"
|
||||
}
|
||||
db_results[final_result["doc_id"]] = final_result
|
||||
return final_result
|
||||
|
||||
|
||||
@router.post("/process", summary="上传并处理单个文档(混合模式)")
|
||||
@router.post("/process", summary="upload and process a document")
|
||||
async def upload_and_process_document(file: UploadFile = File(...)):
|
||||
"""处理上传的文档文件 (PDF, PNG, JPG)"""
|
||||
if not file.filename:
|
||||
raise HTTPException(status_code=400, detail="No file provided.")
|
||||
|
||||
doc_id = str(uuid.uuid4())
|
||||
print(f"\n接收到新文件: {file.filename} (分配ID: {doc_id})")
|
||||
print(f"\nReceiving document: {file.filename} (allocated ID: {doc_id})")
|
||||
contents = await file.read()
|
||||
|
||||
try:
|
||||
file_type = mimetypes.guess_type(file.filename)[0]
|
||||
print(f"检测到文件类型: {file_type}")
|
||||
print(f"File type: {file_type}")
|
||||
|
||||
images: List[Image.Image] = []
|
||||
if file_type == 'application/pdf':
|
||||
@@ -80,20 +70,39 @@ async def upload_and_process_document(file: UploadFile = File(...)):
|
||||
if not images:
|
||||
raise HTTPException(status_code=400, detail="Could not extract images from document.")
|
||||
|
||||
all_page_results = []
|
||||
for i, img in enumerate(images):
|
||||
page_result = await hybrid_process_pipeline(doc_id, img, i + 1)
|
||||
all_page_results.append(page_result)
|
||||
images_base64 = [await run_in_threadpool(image_to_base64_str, img) for img in images]
|
||||
|
||||
return all_page_results
|
||||
classification_result = await agents.agent_classify_document_from_image(images_base64)
|
||||
category = classification_result.category
|
||||
language = classification_result.language
|
||||
print(f"The document is classified as: {category}, Language: {language}")
|
||||
|
||||
extraction_result = None
|
||||
if category in ["RECEIPT", "INVOICE"]:
|
||||
if category == "RECEIPT":
|
||||
extraction_result = await agents.agent_extract_receipt_info(images_base64, language)
|
||||
elif category == "INVOICE":
|
||||
extraction_result = await agents.agent_extract_invoice_info(images_base64, language)
|
||||
else:
|
||||
print(f"The document is classified as '{category}',skipping extraction。")
|
||||
|
||||
# 3. Return a unified result
|
||||
final_result = {
|
||||
"doc_id": doc_id,
|
||||
"page_count": len(images),
|
||||
"category": category,
|
||||
"language": language,
|
||||
"extraction_data": extraction_result.dict() if extraction_result else None,
|
||||
"status": "Processed"
|
||||
}
|
||||
db_results[doc_id] = final_result
|
||||
return final_result
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
||||
|
||||
|
||||
@router.get("/results/{doc_id}", summary="根据ID获取处理结果")
|
||||
@router.get("/results/{doc_id}", summary="Get result by doc_id")
|
||||
async def get_result(doc_id: str):
|
||||
"""根据文档处理后返回的 doc_id 获取其详细处理结果。"""
|
||||
if doc_id in db_results:
|
||||
return db_results[doc_id]
|
||||
raise HTTPException(status_code=404, detail="Document not found.")
|
||||
|
||||
@@ -2,26 +2,26 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Optional
|
||||
|
||||
# --- 分类结果模型 ---
|
||||
# --- Classification Result Model ---
|
||||
class ClassificationResult(BaseModel):
|
||||
"""Defines the structured output for the classification agent."""
|
||||
category: str = Field(description="The category of the document, must be one of ['LETTER', 'INVOICE', 'RECEIPT', 'CONTRACT', 'OTHER']")
|
||||
language: str = Field(description="The detected primary language of the document as a two-letter code (e.g., 'en', 'zh', 'es').")
|
||||
|
||||
# --- 现有模型 (无变化) ---
|
||||
# --- Existing Model (Unchanged) ---
|
||||
class ReceiptItem(BaseModel):
|
||||
name: str = Field(description="购买的项目或服务名称")
|
||||
quantity: float = Field(description="项目数量")
|
||||
price: float = Field(description="项目单价")
|
||||
name: str = Field(description="The name of the purchased item or service")
|
||||
quantity: float = Field(description="The quantity of the item")
|
||||
price: float = Field(description="The unit price of the item")
|
||||
|
||||
class ReceiptInfo(BaseModel):
|
||||
merchant_name: Optional[str] = Field(None, description="商户或店铺的名称")
|
||||
transaction_date: Optional[str] = Field(None, description="交易日期,格式为 YYYY-MM-DD")
|
||||
total_amount: Optional[float] = Field(None, description="收据上的总金额")
|
||||
items: Optional[List[ReceiptItem]] = Field(None, description="购买的所有项目列表")
|
||||
merchant_name: Optional[str] = Field(None, description="The name of the merchant or store")
|
||||
transaction_date: Optional[str] = Field(None, description="The transaction date in the YYYY-MM-DD format")
|
||||
total_amount: Optional[float] = Field(None, description="The total amount on the receipt")
|
||||
items: Optional[List[ReceiptItem]] = Field(None, description="The list of all purchased items")
|
||||
|
||||
|
||||
# --- 新增: 发票行项目模型 ---
|
||||
# --- Added: Invoice Line Item Model ---
|
||||
class LineItem(BaseModel):
|
||||
"""Defines a single line item from an invoice."""
|
||||
description: Optional[str] = Field("", description="The description of the product or service.")
|
||||
@@ -30,7 +30,6 @@ class LineItem(BaseModel):
|
||||
total_price: Optional[float] = Field(None, description="The total price for this line item (quantity * unit_price).")
|
||||
|
||||
|
||||
# --- 发票模型 (已更新) ---
|
||||
class InvoiceInfo(BaseModel):
|
||||
"""Defines the detailed, structured information to be extracted from an invoice."""
|
||||
date: Optional[str] = Field("", description="Extract in YYYY-MM-DD format. If unclear, leave as an empty string.")
|
||||
@@ -48,4 +47,7 @@ class InvoiceInfo(BaseModel):
|
||||
customer_address_region: Optional[str] = Field("", description="It's the receiver's address region. If not found, find the region of the extracted city or country. If unclear, leave as an empty string.")
|
||||
customer_address_care_of: Optional[str] = Field("", description="It's the receiver's address care of. If not found or unclear, leave as an empty string.")
|
||||
billo_id: Optional[str] = Field("", description="Extract from customer_address if it exists, following the format 'LLL NNN-A'. If not found or unclear, leave as an empty string.")
|
||||
bank_giro: Optional[str] = Field("", description="BankGiro number, e.g., '123-4567'. If not found, leave as an empty string.")
|
||||
plus_giro: Optional[str] = Field("", description="PlusGiro number, e.g., '123456-7'. If not found, leave as an empty string.")
|
||||
customer_ssn: Optional[str] = Field("", description="Customer's social security number, e.g., 'YYYYMMDD-XXXX'. If not found, leave as an empty string.")
|
||||
line_items: List[LineItem] = Field([], description="A list of all line items from the invoice.")
|
||||
@@ -1,11 +1,12 @@
|
||||
fastapi
|
||||
uvicorn[standard]
|
||||
python-dotenv
|
||||
langchain
|
||||
langchain-openai
|
||||
chromadb
|
||||
fastapi~=0.115.9
|
||||
uvicorn[standard]~=0.35.0
|
||||
python-dotenv~=1.1.0
|
||||
langchain~=0.3.25
|
||||
langchain-openai~=0.3.16
|
||||
chromadb~=1.0.16
|
||||
tiktoken
|
||||
pdf2image
|
||||
pdf2image~=1.17.0
|
||||
python-multipart
|
||||
pytesseract
|
||||
Pillow
|
||||
Pillow~=11.3.0
|
||||
langchain-core~=0.3.58
|
||||
pydantic~=2.11.7
|
||||
Reference in New Issue
Block a user