Files
AmazingDoc/app/agents/vectorization_agent.py
2025-08-11 14:20:56 +02:00

39 lines
1.4 KiB
Python

# app/agents/vectorization_agent.py
from langchain.text_splitter import RecursiveCharacterTextSplitter
from ..core.vector_store import vector_store, embedding_model
# Initialize the text splitter to divide long documents into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
)
def agent_vectorize_and_store(doc_id: str, text: str, category: str):
"""Agent 4: Vectorization and Storage (Real Implementation)"""
print(f"--- [Agent 4] Vectorizing document (ID: {doc_id})...")
# 1. Split the document text into chunks
chunks = text_splitter.split_text(text)
print(f"--- [Agent 4] Document split into {len(chunks)} chunks.")
if not chunks:
print(f"--- [Agent 4] Document is empty, skipping vectorization.")
return
# 2. Create a unique ID and metadata for each chunk
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
metadatas = [{"doc_id": doc_id, "category": category, "chunk_number": i} for i in range(len(chunks))]
# 3. Use an embedding model to generate vectors for all chunks
embeddings = embedding_model.embed_documents(chunks)
# 4. Add the IDs, vectors, metadata, and text chunks to ChromaDB
vector_store.add(
ids=chunk_ids,
embeddings=embeddings,
documents=chunks,
metadatas=metadatas
)
print(f"--- [Agent 4] document {doc_id} stored in ChromaDB。")