Compare commits

3 Commits

Author SHA1 Message Date
02290bb935 WIP 2025-08-13 23:30:22 +02:00
87ba009bd7 Vector. 2025-08-11 21:38:25 +02:00
f87834a1b3 Add vscode debug config 2025-08-11 16:58:45 +02:00
8 changed files with 50 additions and 53 deletions

16
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,16 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Python: FastAPI",
"type": "debugpy",
"request": "launch",
"module": "uvicorn",
"args": [
"app.main:app",
"--reload"
],
"justMyCode": true
}
]
}

View File

@@ -15,11 +15,14 @@ The document's primary language is '{language}'.
## Instructions:
Carefully analyze the invoice image and extract the following fields according to these specific rules. Do not invent information. If a field is not found or is unclear, follow the specific instruction for that field.
- `date`: Extract in YYYY-MM-DD format. If unclear, leave as an empty string.
- `invoice_date`: The invoice date. Extract in YYYY-MM-DD format. If unclear, leave as an empty string.
- `invoice_due_date`: The invoice due date.Extract in YYYY-MM-DD format. If unclear, leave as an empty string.
- `invoice_number`: If not found or unclear, leave as an empty string.
- `ocr_number`: The OCR number from the invoice. If not found or unclear, leave as an empty string.
- `supplier_number`: This is the organisation number. If not found or unclear, leave as an empty string.
- `biller_name`: This is the sender's name. If not found or unclear, leave as an empty string.
- `amount`: Extract the final total amount and format it to a decimal number. If not present, leave as null.
- `tax_exclusive_amount`: Extract the the amount excluding taxes and format it to a decimal number. If not present, leave as null.
- `customer_name`: This is the receiver's name. Ensure it is a name and clear any special characters. If not found or unclear, leave as an empty string.
- `customer_address`: This is the receiver's full address. Put it in one line. If not found or unclear, leave as an empty string.
- `customer_address_line`: This is only the street address line from the receiver's address. If not found or unclear, leave as an empty string.
@@ -33,7 +36,7 @@ Carefully analyze the invoice image and extract the following fields according t
- `bank_giro`: If found, extract the bank giro number. It often follows patterns like 'ddd-dddd', 'dddd-dddd', or 'dddddddd #41#'. If not found or unclear, leave as an empty string.
- `plus_giro`: If found, extract the plus giro number. It often follows patterns like 'ddddddd-d #16#', 'ddddddd-d', or 'ddd dd dd-d'. If not found or unclear, leave as an empty string.
- `customer_ssn`: If found, extract the customer social security number (personnummer). It follows the pattern 'YYYYMMDD-XXXX' or 'YYMMDD-XXXX'. If not found or unclear, leave as an empty string.
- `line_items`: Extract all line items from the invoice. For each item, extract the `description`, `quantity`, `unit_price`, and `total_price`. If a value is not present, leave it as null.
- `line_items`: Extract all line items from the invoice. For each item, extract the `description`, `quantity`, `unit_price`, and `total_price`. A list of all line items from the invoice. Make sure all of them are extracted. If a value is not present, leave it as null.
## Example:
If the invoice shows a line item "Consulting Services | 2 hours | $100.00/hr | $200.00", the output for that line item should be:

View File

@@ -1,29 +1,25 @@
# app/agents/vectorization_agent.py
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
import chromadb
client = chromadb.PersistentClient(path="./chroma_db")
vector_store = client.get_or_create_collection(name="documents")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
)
def agent_vectorize_and_store(doc_id: str, text: str, category: str, language: str):
"""
Agent 4: Vectorizes a document and stores it in ChromaDB.
"""
def agent_vectorize_and_store(
doc_id: str,
text: str,
category: str,
language: str,
embedding_model,
vector_store
):
print(f"--- [Background Task] Starting vectorization (ID: {doc_id})...")
try:
return
chunks = text_splitter.split_text(text)
if not chunks:
print(f"--- [Background Task] document {doc_id} has no text to vectorize.")
print(f"--- [Background task] document is empty, skip vectorization. (ID: {doc_id})")
return
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
@@ -38,6 +34,6 @@ def agent_vectorize_and_store(doc_id: str, text: str, category: str, language: s
documents=chunks,
metadatas=metadatas
)
print(f"--- [Background Task] Document {doc_id} vectorized and stored successfully.")
print(f"--- [Background Task] Document {doc_id} vectorized")
except Exception as e:
print(f"--- [background Task] Vectorization failed (ID: {doc_id}): {e}")
print(f"--- [Background Task] Document vectorization failed (ID: {doc_id}): {e}")

View File

@@ -4,20 +4,16 @@ from typing import List
def extract_text_from_images(images: List[Image.Image]) -> str:
"""
使用Tesseract OCR从一系列图片中提取并合并所有文本。
"""
print("--- [Core OCR] 正在从图片中提取文本用于向量化...")
print("--- [Core OCR] Extracting text...")
full_text = []
for img in images:
try:
# lang='chi_sim+eng' 表示同时识别简体中文和英文
text = pytesseract.image_to_string(img, lang='chi_sim+eng')
full_text.append(text)
except Exception as e:
print(f"--- [Core OCR] 单页处理失败: {e}")
print(f"--- [Core OCR] Processing image failed: {e}")
continue
combined_text = "\n\n--- Page Break ---\n\n".join(full_text)
print("--- [Core OCR] 文本提取成功。")
print("--- [Core OCR] Text extraction completed.")
return combined_text

View File

@@ -1,47 +1,28 @@
# app/core/vector_store.py
import os
import chromadb
from dotenv import load_dotenv
from langchain_openai import AzureOpenAIEmbeddings, OpenAIEmbeddings
load_dotenv()
LLM_PROVIDER = os.getenv("LLM_PROVIDER", "openai").lower()
embedding_model = None
print(f"--- [Core] Initializing Embeddings with provider: {LLM_PROVIDER} ---")
if LLM_PROVIDER == "azure":
required_vars = [
"AZURE_OPENAI_ENDPOINT", "AZURE_OPENAI_API_KEY",
"OPENAI_API_VERSION", "AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME"
]
if not all(os.getenv(var) for var in required_vars):
raise ValueError("One or more Azure OpenAI environment variables for embeddings are not set.")
embedding_model = AzureOpenAIEmbeddings(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("OPENAI_API_VERSION"),
azure_deployment=os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME"),
)
elif LLM_PROVIDER == "openai":
if not os.getenv("OPENAI_API_KEY"):
raise ValueError("OPENAI_API_KEY is not set for the 'openai' provider.")
embedding_model = OpenAIEmbeddings(
api_key=os.getenv("OPENAI_API_KEY"),
model=os.getenv("OPENAI_EMBEDDING_MODEL_NAME", "text-embedding-3-small")
)
else:
raise ValueError(f"Unsupported LLM_PROVIDER: {LLM_PROVIDER}. Please use 'azure' or 'openai'.")
raise ValueError(f"Unsupported LLM_PROVIDER: {LLM_PROVIDER}.")
client = chromadb.PersistentClient(path="./chroma_db")
vector_store = client.get_or_create_collection(
name="documents",
metadata={"hnsw:space": "cosine"}
)
vector_store = client.get_or_create_collection(name="documents")

View File

@@ -5,10 +5,10 @@ from typing import Dict, Any, List
from fastapi.concurrency import run_in_threadpool
from PIL import Image
from io import BytesIO
from .. import agents
from ..core.pdf_processor import convert_pdf_to_images, image_to_base64_str
from ..core.ocr import extract_text_from_images
from ..core.vector_store import embedding_model, vector_store
# Create an APIRouter instance
router = APIRouter(
@@ -102,10 +102,12 @@ async def upload_and_process_document(
full_text = await run_in_threadpool(extract_text_from_images, images)
background_tasks.add_task(
agents.agent_vectorize_and_store,
doc_id,
full_text,
category,
language
doc_id=doc_id,
text=full_text,
category=category,
language=language,
embedding_model=embedding_model,
vector_store=vector_store
)
print("--- [Main] Vectorization job added to background tasks.")
@@ -118,4 +120,4 @@ async def upload_and_process_document(
async def get_result(doc_id: str):
if doc_id in db_results:
return db_results[doc_id]
raise HTTPException(status_code=404, detail="Document not found.")
raise HTTPException(status_code=404, detail="Document not found.")

View File

@@ -32,11 +32,14 @@ class LineItem(BaseModel):
class InvoiceInfo(BaseModel):
"""Defines the detailed, structured information to be extracted from an invoice."""
date: Optional[str] = Field("", description="Extract in YYYY-MM-DD format. If unclear, leave as an empty string.")
invoice_date: Optional[str] = Field("", description="The invoice date. Extract in YYYY-MM-DD format. If unclear, leave as an empty string.")
invoice_due_date: Optional[str] = Field("", description="The invoice due date.Extract in YYYY-MM-DD format. If unclear, leave as an empty string.")
invoice_number: Optional[str] = Field("", description="If not found or unclear, leave as an empty string.")
ocr_number: Optional[str] = Field("", description="The OCR number from the invoice. If not found or unclear, leave as an empty string.")
supplier_number: Optional[str] = Field("", description="It's the organisation number. If not found or unclear, leave as an empty string.")
biller_name: Optional[str] = Field("", description="It's the sender's name. If not found or unclear, leave as an empty string.")
amount: Optional[float] = Field(None, description="Extract and format to decimal. If not present, leave as null.")
tax_exclusive_amount: Optional[float] = Field(None, description="Extract the the amount excluding taxes and format it to a decimal number. If not present, leave as null.")
customer_name: Optional[str] = Field("", description="It's the receiver's name. Clean any special chars from the name. If not found or unclear, leave as an empty string.")
customer_address: Optional[str] = Field("", description="It's the receiver's address. Put it in one line. If not found or unclear, leave as an empty string.")
customer_address_line: Optional[str] = Field("", description="It's the receiver's address line, not the whole address. If not found or unclear, leave as an empty string.")
@@ -50,4 +53,4 @@ class InvoiceInfo(BaseModel):
bank_giro: Optional[str] = Field("", description="BankGiro number, e.g., '123-4567'. If not found, leave as an empty string.")
plus_giro: Optional[str] = Field("", description="PlusGiro number, e.g., '123456-7'. If not found, leave as an empty string.")
customer_ssn: Optional[str] = Field("", description="Customer's social security number, e.g., 'YYYYMMDD-XXXX'. If not found, leave as an empty string.")
line_items: List[LineItem] = Field([], description="A list of all line items from the invoice.")
line_items: List[LineItem] = Field([], description="A list of all line items from the invoice. Make sure all of them are extracted.")

Binary file not shown.